Lời giải
Ta có \(\frac{1}{{{a^2} + {b^2}}} + \frac{1}{{2ab}} - \frac{1}{{2ab}}\)
Áp dụng bất đẳng thức Cauchy, ta được:
\(\frac{1}{{{a^2} + {b^2}}} + \frac{1}{{2ab}} \ge \frac{4}{{{a^2} + {b^2} + 2ab}} = \frac{4}{{{{\left( {a + b} \right)}^2}}} = \frac{4}{{{1^2}}} = 4\) (1)
Áp dụng bất đẳng thức Cauchy, ta được: 4ab ≤ (a + b)2 = 12 = 1.
\( \Rightarrow \frac{2}{{4ab}} \ge \frac{2}{1}\) \( \Rightarrow \frac{1}{{2ab}} \ge 2\) (2)
Lấy (1) trừ (2) vế theo vế, ta được: \(\frac{1}{{{a^2} + {b^2}}} + \frac{1}{{2ab}} - \frac{1}{{2ab}} \ge 4 - 2\).
Vậy \(\frac{1}{{{a^2} + {b^2}}} \ge 2\) (điều phải chứng minh).
Dấu “=” xảy ra \( \Leftrightarrow a = b = \frac{1}{2}\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.
Khẳng định nào sau đây đúng?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.
a) Chứng minh AD = BC.
b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.
c) Chứng minh OE là phân giác của \(\widehat {xOy}\).
Tính tổng sau đây:
\(C_{2021}^0 - 2.C_{2021}^1 + {2^2}.C_{2021}^2 - {2^3}.C_{2021}^3 + ... - {2^{2021}}.C_{2021}^{2021}\).
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh rằng BE = CD.
b) Chứng minh BE // CD.
c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN.
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ bên.
Khẳng định nào sau đây đúng?