IMG-LOGO

Câu hỏi:

20/07/2024 36

Cho hai tập hợp A = (m – 1; 5], B = (3; 2020 – 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ?

A. 3.

B. 399.

C. 398.

D. 2.

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)

m < 6.

Để A \ B = thì A B.

\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)

4 ≤ m < 403.

So với điều kiện m < 6, ta nhận 4 ≤ m < 6.

Mà m ℤ nên m {4; 5}.

Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án D.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem đáp án » 02/04/2024 218

Câu 2:

Từ 12 học sinh gồm 5 học sinh giỏi, 4 học sinh khá, 3 học sinh trung bình, giáo viên muốn thành lập 4 nhóm làm 4 bài tập lớn khác nhau, mỗi nhóm 3 học sinh. Tính xác suất để nhóm nào cũng có học sinh giỏi và học sinh khá.

Xem đáp án » 02/04/2024 142

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn là AB. Lấy M, N lần lượt thuộc các cạnh SC, SD. Tìm thiết diện của hình chóp với các mặt phẳng (ABM) và (AMN).

Xem đáp án » 02/04/2024 88

Câu 4:

Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.

Media VietJack

Khẳng định nào sau đây đúng?

Xem đáp án » 02/04/2024 86

Câu 5:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.

Media VietJack

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?

Xem đáp án » 02/04/2024 80

Câu 6:

Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.

a) Chứng minh AD = BC.

b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.

c) Chứng minh OE là phân giác của \(\widehat {xOy}\).

Xem đáp án » 02/04/2024 77

Câu 7:

Tính tổng sau đây:

\(C_{2021}^0 - 2.C_{2021}^1 + {2^2}.C_{2021}^2 - {2^3}.C_{2021}^3 + ... - {2^{2021}}.C_{2021}^{2021}\).

Xem đáp án » 02/04/2024 69

Câu 8:

Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.

a) Chứng minh rằng BE = CD.

b) Chứng minh BE // CD.

c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN.

Xem đáp án » 02/04/2024 66

Câu 9:

Cho tam giác ABC có AB = AC. Trên hai cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Gọi E và D lần lượt là trung điểm của MN và BC. Chứng minh ba điểm A, E, D thẳng hàng.

Xem đáp án » 02/04/2024 65

Câu 10:

Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d: y = mx – m + 1 (m ≠ 0) lớn nhất.

Xem đáp án » 02/04/2024 62

Câu 11:

Cho hàm số y = mx + 3. Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất.

Xem đáp án » 02/04/2024 61

Câu 12:

Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ bên.

Media VietJack

Khẳng định nào sau đây đúng?

Xem đáp án » 02/04/2024 53

Câu 13:

Số nghiệm của phương trình cos2x + 3sinx – 2 = 0 trên khoảng (0; 20π) là bao nhiêu?

Xem đáp án » 02/04/2024 48

Câu 14:

Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–2; 3), C(3; 1). Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A.

Xem đáp án » 02/04/2024 42

Câu 15:

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Xem đáp án » 02/04/2024 40

Câu hỏi mới nhất

Xem thêm »
Xem thêm »