a) Tính giá trị của \(T = C_{2021}^0 + C_{2021}^2 + C_{2021}^4 + ... + C_{2021}^{2020}\).
b) Tính \(S = C_{15}^8 + C_{15}^9 + C_{15}^{10} + ... + C_{15}^{15}\).
Lời giải
a) Xét khai triển: \({\left( {1 + x} \right)^{2021}} = C_{2021}^0 + C_{2021}^1.x + ... + C_{2021}^{2020}.{x^{2020}} + C_{2021}^{2021}.{x^{2021}}\).
Thay x = 1 vào khai triển trên, ta được:
\({2^{2021}} = C_{2021}^0 + C_{2021}^1 + ... + C_{2021}^{2020} + C_{2021}^{2021}\) (1)
Thay x = –1 vào khai triển trên, ta được:
\(0 = C_{2021}^0 - C_{2021}^1 + C_{2021}^2 - C_{2021}^3 + ... + C_{2021}^{2020} - C_{2021}^{2021}\).
\( \Leftrightarrow C_{2021}^0 + C_{2021}^2 + ... + C_{2021}^{2020} = C_{2021}^1 + C_{2021}^3 + ... + C_{2021}^{2021}\) (2)
Thế (2) vào (1), ta được:
\(2\left( {C_{2021}^0 + C_{2021}^2 + C_{2021}^4 + ... + C_{2021}^{2020}} \right) = {2^{2021}}\).
Vậy T = 22020.
b) Xét khai triển: \({\left( {1 + x} \right)^{15}} = C_{15}^0 + C_{15}^1.x + ... + C_{15}^{15}.{x^{15}}\).
Thay x = 1 vào khai triển trên, ta được: \({2^{15}} = C_{15}^0 + C_{15}^1 + ... + C_{15}^{15}\).
Mà \(C_{15}^0 = C_{15}^{15};\,\,C_{15}^1 = C_{15}^{14};\,\,C_{15}^2 = C_{15}^{13};\,\,...;\,\,C_{15}^7 = C_{15}^8\).
Khi đó \(2\left( {C_{15}^8 + C_{15}^9 + C_{15}^{10} + ... + C_{15}^{15}} \right) = {2^{15}}\).
Vậy S = 214.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.
Khẳng định nào sau đây đúng?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.
a) Chứng minh AD = BC.
b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.
c) Chứng minh OE là phân giác của \(\widehat {xOy}\).
Tính tổng sau đây:
\(C_{2021}^0 - 2.C_{2021}^1 + {2^2}.C_{2021}^2 - {2^3}.C_{2021}^3 + ... - {2^{2021}}.C_{2021}^{2021}\).
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh rằng BE = CD.
b) Chứng minh BE // CD.
c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN.
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ bên.
Khẳng định nào sau đây đúng?