Trong các mệnh đề sau, mệnh đề nào sai?
A. ∃ n ∈ N, n2 + 11n + 2 chia hết cho 11.
B. ∃ n ∈ N, n2 + 1 chia hết cho 4.
C. Tồn tại số nguyên tố chia hết cho 5
D. ∃ n ∈ Z, 2x2 – 8 = 0
Đáp án cần chọn là: B
+ Xét đáp án A. Khi n = 3 thì giá trị của (n2 + 11n + 2) bằng 44⋮11 nên đáp án A đúng
+ Xét đáp án B. Khi n = 2k, k ∈ N ⇒ n2 + 1 = 4k2 + 1 không chia hết cho 4, k ∈ N.
Khi n = 2k + 1, k ∈ N ⇒ n2 + 1 = (2k + 1)2+1 = 4k2 + 4k +2 không chia hết cho 4, k ∈ N.
+ Xét đáp án C. Tồn tại số nguyên tố 5 chia hết cho 5 nên đáp án C đúng
+ Xét đáp án D. Phương trình 2x2 − 8 = 0 ⇔ x2 = 4 ⇔ x = −2; x = 2 ∈ Z nên đáp án D đúng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho mệnh đề chứa biến: P(x):″x2 − 2x ≥ 0″ với x ∈ R. Giá trị của x nào dưới đây làm cho P(x) đúng?
Cho A = (2; +∞), B = (m; +∞). Điều kiện cần và đủ của m sao cho B là tập con của A là:
Cho ba tập hợp:
M: tập hợp các tam giác có 2 góc tù.
N: tập hợp các tam giác có độ dài ba cạnh là ba số nguyên liên tiếp.
P: tập hợp các số nguyên tố chia hết cho 3.
Tập hợp nào là tập hợp rỗng?
Dùng các kí hiệu ∀, ∃ để viết lại mệnh đề sau và viết mệnh đề phủ định của nó:
Q: “Với mọi số thực thì bình phương của nó là một số không âm”
Cho mệnh đề P: "Với mọi số thực x, nếu x là số hữu tỉ thì 2x là số hữu tỉ".
Xác định tính đúng - sai của các mệnh đề P,