Cho phương trình đường thẳng y = 1 + 3x (d). Tìm các điểm A (x; y) thuộc (d) có tọa độ thỏa mãn phương trình 6x + y2 = 5y
A.
B.
C.
D.
Đáp án cần chọn là: A
Gọi A (x; 1 + 3x) ∈ (d).
Tọa độ điểm A thỏa mãn phương trình 6x + y2 = 5y khi và chỉ khi:
6x + (1 + 3x)2 = 5(1 + 3x)
⇔ 6x + 1 + 6x + 9x2 = 5 + 15x
⇔ 9x2 − 3x – 4 = 0
Thay vào phương trình đường thẳng (d) ta tìm được hai điểm thỏa mãn là:
và
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = ax + b có đồ thị là hình bên. Giá trị của a và b là:
Tìm giá trị thực của tham số m để ba đường thẳng y = −5(x + 1), y = mx + 3 và y = 3x + m phân biệt và đồng qui.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm E (2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3). Tính giá trị biểu thức S = a2 + b2.
Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I (1; 2) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 4.
Cho đường thẳng (d): y = –2x + 3. Tìm m để đường thẳng d′: y = mx + 1 cắt d tại một điểm thuộc đường phân giác của góc phần tư thứ hai
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2017; 2017] để hàm số y = (m2 − 4)x + 2m đồng biến trên R.
Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Đặt S(x) = f(x) + g(x) và P(x) = f(x) g(x).
Xét các mệnh đề:
i) Nếu y = f(x) và y = g(x) là những hàm số chẵn thì y = S(x) và y = P(x) cũng là những hàm số chẵn
ii) Nếu y = f(x) và y = g(x) là những hàm số lẻ thì y = S(x) là hàm số lẻ và y = P(x) là hàm số chẵn
iii) Nếu y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì y = P(x) là hàm số lẻ
Số mệnh đề đúng là:
Cho điểm A(1; 1) và hai đường thẳng (d1): y = x − 1; (d2): y = 4x − 2. Viết phương trình đường thẳng (d) đi qua điểm A và cắt các đường thẳng (d1), (d2) tạo thành một tam giác vuông.