Phương trình z3 = 1 có ba nghiệm phức phân biệt và A; B; C là các điểm biểu diễn ba số phức đó trên mặt phẳng phức. Trọng tâm tam giác ABC có tọa độ là
A. (0; 0);
B. (1; 1);
C. (-1; 1);
Đáp án đúng là: A
z3 = 1 Û (z - 1)(z2 + z + 1) = 0
Vậy suy ra
Trong tâm G của tam giác ABC có tọa độ là
Þ G(0; 0).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
Cho hàm số Gọi F (x) là nguyên hàm của hàm số f (x) trên ℝ thỏa mãn F (0) = 2; F (-2) = 1. Giá trị của F (1) - F (-3) bằng
Cho số phức z. Biểu thức |z + 1|2 + |z - 1|2 - 2 có giá trị bằng giá trị của biểu thức nào sau đây
Biết F(x) là một nguyên hàm xủa hàm số f (x) = ex + 2x thỏa mãn F (1) = e. Khi đó, F (x) bằng
Trong hệ tọa độ Oxyz cho M(2; 5; -1) và N(4; 3; 0) độ dài đoạn thẳng MN bằng
Số phức z = 3a + 4bi với a; b là các số thực khác 0. Số phức z-1 có phần ảo là
Trong hệ tọa độ Oxyz điểm M' đối xứng của điểm N(2; 3; -4) qua gốc tọa độ O có tọa độ
Tọa độ hình chiếu vuông góc của điểm M(1; -1; 2) trên mặt phẳng (P): 2x - y + 2z + 12 = 0 là