Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
A. x + y - 2z + 5 = 0;
B. x + y - 2z - 5 = 0;
C. x + y + 2z - 1 = 0;
Đáp án đúng là: B
Đường thẳng (d): x - 1 = y - 2 = z + 1 có véc-tơ chỉ phương là:
Phương trình tham số của đường thẳng (d) là
Viết phương trình (P) đi qua A và vuông góc với đường thẳng (d) nên nhận làm véc-tơ pháp tuyến
(P): (x - 2) + (y - 3) + (z + 3) = 0
Û x + y + z - 2 = 0
Gọi H là hình chiếu của M lên đường thẳng (d) nên suy ra H là giao điểm của (d) và mặt phẳng (P)
Suy ra H(1 + t; 2 + t; -1 + t) thuộc mặt phẳng (P)
Þ 1 + t + 2 + t + -1 + t - 2 = 0
Û 3t = 0 Û t = 0
Vậy H(1; 2; -1)
Để khoảng cách từ A đến mặt phẳng (Q) chứa (d) là lớn nhất thì AH vuông góc với mặt phẳng (Q)
Mặt phẳng (Q) đi qua H(1; 2; -1) và có làm véc-tơ pháp tuyến là
(Q): -(x - 1) - (y - 2) + 2(z + 1) = 0
Û - x - y + 2z + 5 = 0
Û x + y - 2z - 5 = 0.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Phương trình z3 = 1 có ba nghiệm phức phân biệt và A; B; C là các điểm biểu diễn ba số phức đó trên mặt phẳng phức. Trọng tâm tam giác ABC có tọa độ là
Cho hàm số Gọi F (x) là nguyên hàm của hàm số f (x) trên ℝ thỏa mãn F (0) = 2; F (-2) = 1. Giá trị của F (1) - F (-3) bằng
Cho số phức z. Biểu thức |z + 1|2 + |z - 1|2 - 2 có giá trị bằng giá trị của biểu thức nào sau đây
Biết F(x) là một nguyên hàm xủa hàm số f (x) = ex + 2x thỏa mãn F (1) = e. Khi đó, F (x) bằng
Trong hệ tọa độ Oxyz điểm M' đối xứng của điểm N(2; 3; -4) qua gốc tọa độ O có tọa độ
Trong hệ tọa độ Oxyz cho M(2; 5; -1) và N(4; 3; 0) độ dài đoạn thẳng MN bằng
Số phức z = 3a + 4bi với a; b là các số thực khác 0. Số phức z-1 có phần ảo là
Tọa độ hình chiếu vuông góc của điểm M(1; -1; 2) trên mặt phẳng (P): 2x - y + 2z + 12 = 0 là