Phương trình có tất cả bao nhiêu nghiệm thực?
A. 2
B. 3
C. 4
D. 8
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gọi là một nghiệm của hệ phương trình . Mệnh đề nào sau đây đúng?
Cho là các số thực. Đồ thị các hàm số , trên khoảng được cho trong hình vẽ bên. Khẳng định nào sau đây là đúng?
Cho a là số thực tùy ý và b, c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số . Khẳng định nào sau đây đúng?
Một người gửi tiết kiệm với lãi suất 6,5% năm và lãi hàng năm được nhập vào vốn. Hỏi khoảng bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?
Một người vay ngân hàng một số tiền T với lãi suất mỗi tháng là r. Biết cuối tháng người đó phải trả cho ngân hàng A đồng. Hỏi người đó phải trả trong bao nhiêu tháng thì hết nợ?
Gọi (x;y) là nghiệm của hệ phương trình , khi đó giá trị biểu thức A=x-2y là:
Cho a là số thực tùy ý và b, c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số G, và . Khẳng định nào sau đây là đúng?
I. Bất phương trình mũ.
1. Bất phương trình mũ cơ bản
Bất phương trình mũ cơ bản có dạng ax > b ( hoặc ax < b; ) với a > 0 và a ≠ 1.
Ta xét bất phương trình ax > b
+ Nếu b ≤ 0 tập nghiệm của bất phương trình là vì ax > 0 .
+ Nếu b > 0 thì tập nghiệm của bất phương trình tương đương .
Với a > 1, tập nghiệm của bất phương trình là x > logab.
Với 0 < a < 1, tập nghiệm của bất phương trình là x < logab.
– Ví dụ 1.
a) 5x > 125 x > log5125 x > 3.
b)
Kết luận. Tập nghiệm của bất phương trình ax > b được cho trong bảng sau:
ax > b |
Tập nghiệm |
|
a > 1 |
0 < a < 1 |
|
b ≤ 0 |
R |
R |
b > 0 |
2. Bất phương trình mũ đơn giản
– Ví dụ 2. Giải bất phương trình 3x + 2 < 27.
Lời giải:
Ta có: 27 = 33
Vì cơ số 3 > 1 nên x + 2 < 3
x < 1.
Vậy tập nghiệm của bất phương trình đã cho là x < 1.
II. Bất phương trình logarit
1. Bất phương trình logarit cơ bản
Bất phương trình logarit cơ bản có dạng loga x > b ( hoặc logax < 0; ) với a > 0; a ≠ 1.
Xét bất phương trình logax > b
+ Trường hợp a > 1 ta có: logax > bx > ab.
+ Trường hợp 0 < a < 1 ta có: logax > b0 < x < ab.
– Ví dụ 3.
a) log2x > 7x > 27.
b)
Kết luận: Nghiệm của bất phương trình logax > b được cho trong bảng sau:
logax > b |
a > 1 |
0 < a < 1 |
Nghiệm |
x > ab |
0 < x < ab |
2. Bất phương trình logarit đơn giản
– Ví dụ 4. Giải bất phương trình > .
Lời giải:
Điều kiện của bất phương trình:
Ta có:
Vì cơ số 3 > 1 nên: x2 + 2x > x + 2
x2 + x – 2 > 0
Kết hợp điều kiện, vậy x > 1.