IMG-LOGO

Câu hỏi:

19/07/2024 141

Số nghiệm của phương trình \[4\sqrt {{x^2} - 6x + 6} = {x^2} - 6x + 9\] là:


A. 1;



B. 2;



C. 3;



D. 4.


Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Điều kiện của phương trình x2 – 6x + 6 ≥ 0 \[ \Leftrightarrow \left[ \begin{array}{l}x \ge 3 + \sqrt 3 \\x \le 3 - \sqrt 3 \end{array} \right.\]

Đặt \[\sqrt {{x^2} - 6x + 6} = t(t \ge 0)\]

\[4\sqrt {{x^2} - 6x + 6} = {x^2} - 6x + 9 \Leftrightarrow 4t = {t^2} + 3\]

\[ \Leftrightarrow {t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 3\end{array} \right.\]

Với t = 1 ta có phương trình \[\sqrt {{x^2} - 6x + 6} = 1 \Leftrightarrow {x^2} - 6x + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\]

Với t = 3 ta có phương trình \[\sqrt {{x^2} - 6x + 6} = 3 \Leftrightarrow {x^2} - 6x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3 + 2\sqrt 3 \\x = 3 - 2\sqrt 3 \end{array} \right.\]

Kết hợp với điều kiện cả bốn nghiệm đều thỏa mãn.

Vậy phương trình có 4 nghiệm.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:

Xem đáp án » 08/09/2022 188

Câu 2:

Nghiệm của phương trình: \[\sqrt {x + 1} + \sqrt {4x + 13} = \sqrt {3x + 12} \] là:

Xem đáp án » 08/09/2022 170

Câu 3:

Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:

Xem đáp án » 08/09/2022 165

Câu 4:

Nghiệm của phương trình \[\sqrt {3x + 13} = x + 3\] là:

Xem đáp án » 08/09/2022 153

Câu 5:

Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:

Xem đáp án » 08/09/2022 146

Câu 6:

Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:

Xem đáp án » 08/09/2022 142

Câu 7:

Tổng các nghiệm của phương trình \[\left( {x - 2} \right)\sqrt {2x + 7} = {x^2} - 4\] bằng:

Xem đáp án » 08/09/2022 139

Câu 8:

Nghiệm của phương trình \[\sqrt {2{x^2} - 6x - 4} = x - 2\] là:

Xem đáp án » 08/09/2022 137

Câu 9:

Số nghiệm của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) là:

Xem đáp án » 08/09/2022 127

Câu 10:

Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\]là:

Xem đáp án » 08/09/2022 126

Câu 11:

Số nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\] là:

Xem đáp án » 08/09/2022 124

Câu 12:

Gọi k là số nghiệm âm của phương trình :\(\sqrt { - {x^2} + 6x - 5} = 8 - 2x\). Khi đó k bằng:

Xem đáp án » 08/09/2022 118

Câu 13:

Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \]

Xem đáp án » 08/09/2022 113

Câu 14:

Số nghiệm của phương trình \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:

Xem đáp án » 08/09/2022 110

LÝ THUYẾT

Bài 18: Phương trình quy về phương trình bậc hai

Câu hỏi mới nhất

Xem thêm »
Xem thêm »