IMG-LOGO

Câu hỏi:

22/07/2024 133

Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\]là:


A. 5;



B. 9;



C. 14;


Đáp án chính xác


D. 4;


 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Điều kiện của phương trình: x2 + 5x + 2 ≥ 0\[ \Leftrightarrow \left[ \begin{array}{l}x \ge \frac{{ - 5 + \sqrt {17} }}{2}\\x \le \frac{{ - 5 - \sqrt {17} }}{2}\end{array} \right.\]

\[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6 \Leftrightarrow {x^2} + 5x + 4 - 3\sqrt {{x^2} + 5x + 2} = 6\]

Đặt \[\sqrt {{x^2} + 5x + 2} = t(t \ge 0)\]

\[{x^2} + 5x + 4 - 3\sqrt {{x^2} + 5x + 2} = 6 \Leftrightarrow {t^2} - 3t - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 4\end{array} \right.\]

Kết hợp với điều kiện t = 4 thỏa mãn

Với t = 4 ta có \[\sqrt {{x^2} + 5x + 2} = 4 \Leftrightarrow {x^2} + 5x - 14 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 7\end{array} \right.\]

Vậy tích các nghiệm của phương trình là – 14.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:

Xem đáp án » 08/09/2022 197

Câu 2:

Nghiệm của phương trình: \[\sqrt {x + 1} + \sqrt {4x + 13} = \sqrt {3x + 12} \] là:

Xem đáp án » 08/09/2022 181

Câu 3:

Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:

Xem đáp án » 08/09/2022 174

Câu 4:

Nghiệm của phương trình \[\sqrt {3x + 13} = x + 3\] là:

Xem đáp án » 08/09/2022 160

Câu 5:

Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:

Xem đáp án » 08/09/2022 154

Câu 6:

Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:

Xem đáp án » 08/09/2022 148

Câu 7:

Số nghiệm của phương trình \[4\sqrt {{x^2} - 6x + 6} = {x^2} - 6x + 9\] là:

Xem đáp án » 08/09/2022 147

Câu 8:

Tổng các nghiệm của phương trình \[\left( {x - 2} \right)\sqrt {2x + 7} = {x^2} - 4\] bằng:

Xem đáp án » 08/09/2022 146

Câu 9:

Nghiệm của phương trình \[\sqrt {2{x^2} - 6x - 4} = x - 2\] là:

Xem đáp án » 08/09/2022 145

Câu 10:

Số nghiệm của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) là:

Xem đáp án » 08/09/2022 135

Câu 11:

Số nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\] là:

Xem đáp án » 08/09/2022 133

Câu 12:

Gọi k là số nghiệm âm của phương trình :\(\sqrt { - {x^2} + 6x - 5} = 8 - 2x\). Khi đó k bằng:

Xem đáp án » 08/09/2022 126

Câu 13:

Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \]

Xem đáp án » 08/09/2022 121

Câu 14:

Số nghiệm của phương trình \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:

Xem đáp án » 08/09/2022 117

LÝ THUYẾT

Bài 18: Phương trình quy về phương trình bậc hai

Câu hỏi mới nhất

Xem thêm »
Xem thêm »