Chủ nhật, 15/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 33

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H trùng với trung điểm của AB, biết\(SH = a\sqrt 3 \). Gọi M là giao điểm của HD và AC. Tính khoảng cách từ điểm M đến mặt phẳng (SCD).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc (ảnh 1)

Xét ∆HAD, có AC là tia phân giác của góc \(\widehat {HAD}\)

\[ \Rightarrow \frac{{AH}}{{AD}} = \frac{{HM}}{{MD}} = \frac{1}{2} \Rightarrow \frac{{HD}}{{MD}} = \frac{3}{2}\]

Ta có: \(\left\{ \begin{array}{l}H,\;M \in HD\\HM \cap \left( {SCD} \right) = D\end{array} \right. \Rightarrow \frac{{d\left( {H,\;\left( {SCD} \right)} \right)}}{{d\left( {M,\;\left( {SCD} \right)} \right)}} = \frac{{HD}}{{MD}} = \frac{3}{2}\)

Gọi N là trung điểm của CD Þ HN ^ CD

Trong (SHN) từ H kẻ HK ^ SN (1), K Î SN

Ta có: \(\left\{ \begin{array}{l}CD \bot HN\\CD \bot SH\end{array} \right. \Rightarrow CD \bot \left( {SHN} \right) \Rightarrow CD \bot HK\;\left( 2 \right)\)

Từ (1) và (2) Þ HK ^ (SCD)

Khi đó: \(d\left( {H,\;\left( {SCD} \right)} \right) = HK = \frac{{SH\,.\,HN}}{{\sqrt {S{H^2} + H{N^2}} }} = \frac{{a\sqrt 3 \,.\,a}}{{\sqrt {{{\left( {a\sqrt 3 } \right)}^2} + {a^2}} }} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow d\left( {M,\;\left( {SCD} \right)} \right) = \frac{{a\sqrt 3 }}{2}:\frac{3}{2} = \frac{a}{{\sqrt 3 }}\)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1,2,3.

Xem đáp án » 02/04/2024 530

Câu 2:

Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1,2,3 luôn đứng cạnh nhau.

Xem đáp án » 02/04/2024 120

Câu 3:

Tìm m để mọi x Î [0; +∞) đều là nghiệm của bất phương trình:

(m2 − 1)x2 − 8mx + 9 − m2 ≥ 0

Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc (0; 1)

Xem đáp án » 02/04/2024 115

Câu 4:

Tìm m để bất phương trình 2x− (2m + 1)x + m− 2m + 2 ≤ 0 nghiệm đúng với mọi \[x \in \left[ {\frac{1}{2};\;2} \right]\]

Xem đáp án » 02/04/2024 110

Câu 5:

Thửa ruộng hình chữ nhật có chiều dài 60 m, chiều rộng bằng \(\frac{2}{3}\) chiều dài. Trung bình cứ 100 mét vuông thì thu hoạch được 50 kg thóc. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu ki-lô-gam thóc?

Xem đáp án » 02/04/2024 105

Câu 6:

Tìm m để đồ thị hàm số bậc nhất y = mx − 4 cắt đường thẳng y = −3x + 2 tại điểm có tung độ bằng 5.

Xem đáp án » 01/04/2024 87

Câu 7:

Một thửa ruộng hình chữ nhật có chiều dài 60m, chiều dài bằng \(\frac{3}{2}\) chiều rộng, trên thửa ruộng đó người ta trồng lúa cứ 100m2 thu hoạch được 50 kg. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu tạ thóc?

Xem đáp án » 02/04/2024 82

Câu 8:

Cho (O) và (O') cắt nhau tại A và B. Vẽ hình bình hành OBO'C.

Chứngminh: AC//OO'

Xem đáp án » 02/04/2024 66

Câu 9:

Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB).Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.

a) Chứng minh K là trung điểm của AB.

b) Vẽ MH ^ OI tại H. Chứng minh OB2 = OH.OI.

c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.

Xem đáp án » 02/04/2024 62

Câu 10:

Cho số phức z thỏa mãn |z + i + 1| = |z  − 2i|. Tìm giá trị nhỏ nhất |z|.

Xem đáp án » 02/04/2024 57

Câu 11:

Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.

Xem đáp án » 01/04/2024 55

Câu 12:

Cho hai hàm số y=x2 và y=2xm+2.Tìm m để đồ thị hai hàm số trên chỉ có một điểm chung? Tìm tọa độ điểm chung đó?

Xem đáp án » 02/04/2024 55

Câu 13:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau mà tổng các chữ số là chẵn?

Xem đáp án » 02/04/2024 55

Câu 14:

Xét vị trí tương đối của hai đường thẳng d1: x − 2y + 1 = 0 và d2: −3x + 6y – 10 = 0.

Xem đáp án » 02/04/2024 54

Câu 15:

Cho phương trình: x2 − (m − 2)x− m − 1 = 0 (với m là tham số)

a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m.

b) Tìm m thỏa mãn hệ thức: (x1 − x2)2 − 3x1x2 = 21

Xem đáp án » 02/04/2024 53

Câu hỏi mới nhất

Xem thêm »
Xem thêm »