Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 194

Giả sử F(x) = x2 là một nguyên hàm của f(x)sin2x và G(x) là một nguyên hàm của f(x)cos2x trên khoảng (0; π). Biết rằng Gπ2 = 0, Gπ4 = aπ + bπ2 + cln2, với a, b, c là các số hữu tỉ. Tổng a + b + c bằng

A. 2716;

B. 2116;

Đáp án chính xác

C. 516;

D. 1116.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

F(x) = x2 là nguyên hàm của f(x)sin2x

Nên F'(x) = f(x)sin2x

Û 2x = f(x)sin2x Û f(x) = 2xsin2x 

G(x) là nguyên hàm của f(x)cos2x

Do đó G(x) = f(x)cos2xdx = 2xsin2x.cos2xdx 

= 2x(1sin2x)sin2xdx = 2xsin2xdx2xdx 

= 2xd(cotx) − x2

= −2xcotx + 2cotx.dx − x2

= −2xcotx – x2 + 2cotx.dx 

= −2xcotx – x2 + 2ln|sinx| + C

Theo giả thiết:

Gπ2 = 0

2.π2.cotπ2π22+2lnsinπ2+C=0

π.0π42+2ln1+C=0

Û π24 + C = 0 Û C = π24 

Nên G(x) = −2xcotx – x2 + 2ln|sinx| + π24 

Gπ4=2.π4.cotπ4π42+2lnsinπ4+π24 

= π2π216+2ln12+π24 

= π2+3π2162ln2 

= π2+3π216ln2 

Gπ4 = aπ + bπ2 + cln2

Nên ta có: a = 12; b = 316; c = −1

Vậy a + b + c = 12 + 316 − 1 = 2116.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) = x3 + ax2 + bx + c với a, b, c là các số thực. Biết hàm số g(x) = f(x) + f '(x) + f "(x) có hai giá trị cực trị là −4 và 2. Diện tích hình phẳng giới hạn bởi các đường y = f(x)g(x)+6 và y = 1 bằng

Xem đáp án » 15/08/2022 1,379

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?

Xem đáp án » 15/08/2022 1,205

Câu 3:

Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên. Diện tích hình phẳng giới hạn bởi đồ thị hàm số đã cho và trục hoành (phần gạch chéo) bằng
Media VietJack

Xem đáp án » 15/08/2022 815

Câu 4:

Họ tất cả các nguyên hàm của hàm số f(x) = 123x trên khoảng 23;+ 

Xem đáp án » 15/08/2022 721

Câu 5:

Biết 01f(x)dx = 6. Tích phân 013f(13x)dx bằng

Xem đáp án » 15/08/2022 627

Câu 6:

Cho hàm số f(x) liên tục trên đoạn [1; 3]. Biết F(x) là nguyên hàm của f(x) trên đoạn [1; 3] thỏa mãn F(1) = −2 và F(3) = 5. Khi đó 13f(x)dx bằng

Xem đáp án » 15/08/2022 588

Câu 7:

Biết rằng 01dx3x+53x+1+7 = aln2 + bln3 + cln5, với a, b, c ℚ. Giá trị a + b + c bằng

Xem đáp án » 15/08/2022 420

Câu 8:

Gọi z1 , z2 là hai nghiệm phức của phương trình z2 – 3z + 5 = 0. Môđun của số phức (2z¯1 − 3)(2z¯2 − 3) bằng

Xem đáp án » 15/08/2022 347

Câu 9:

Cho số phức z thỏa mãn z + 2z¯ = 6 + 2i. Điểm biểu diễn số phức z có tọa độ là

Xem đáp án » 15/08/2022 247

Câu 10:

Phần ảo của số phức z = 3 – 5i bằng

Xem đáp án » 15/08/2022 215

Câu 11:

Cho số phức z thỏa mãn iz = 4 – 3i. Số phức liên hợp của z là

Xem đáp án » 15/08/2022 195

Câu 12:

Môđun của số phức z = 4 – 3i bằng

Xem đáp án » 15/08/2022 185

Câu 13:

Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y − 2)2 + (z + 1)2 = 6, tiếp xúc với hai mặt phẳng (P): x + y + 2z + 5 = 0 và (Q): 2x – y + z – 5 = 0 lần lượt tại hai điểm A và B. Độ dài đoạn thẳng AB bằng

Xem đáp án » 15/08/2022 185

Câu 14:

Trong không gian Oxyz, cho hai điểm A(10; 6; −2), B(5; 10; −9) và mặt phẳng (α): 2x + 2y + z – 12 = 0. Điểm M thay đổi thuộc mặt phẳng (α) sao cho hai đường thẳng MA và MB luôn tạo với (α) các góc bằng nhau. Biết rằng điểm M luôn thuộc một đường tròn cố định. Hoành độ của tâm đường tròn đó bằng

Xem đáp án » 15/08/2022 183

Câu 15:

Trong không gian Oxyz, cho ba đường thẳng d: x1=y1=z+12; 1: x32=y1=z11 và ∆2: x11=y22=z1. Đường thẳng ∆ vuông góc với d đồng thời cắt ∆1, ∆2 lần lượt tại H, K sao cho HK nhỏ nhất. Biết rằng ∆ có một vectơ chỉ phương u(h; k; 1). Giá trị h – k bằng

Xem đáp án » 15/08/2022 172

Câu hỏi mới nhất

Xem thêm »
Xem thêm »