a) f(x) = (3x2 – 10x + 3)(4x – 5)
+ Tam thức 3x2 – 10x + 3 có hai nghiệm x = 1/3 và
x = 3, hệ số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc
x > 3 và mang dấu – nếu 1/3 < x < 3.
+ Nhị thức 4x – 5 có nghiệm x = 5/4.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (1/3; 5/4) ∪ x ∈ (3; +∞)
f(x) = 0 khi x ∈ {1/3; 5/4; 3}
f(x) < 0 khi x ∈ (–∞; 1/3) ∪ (5/4; 3)
b) f(x) = (3x2 – 4x)(2x2 – x – 1)
+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số
a = 3 > 0.
Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang
dấu – khi 0 < x < 4/3.
+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số
a = 2 > 0
Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang
dấu – khi –1/2 < x < 1.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 ⇔ x ∈ (–∞; –1/2) ∪ (0; 1) ∪ (4/3; +∞)
f(x) = 0 ⇔ x ∈ {–1/2; 0; 1; 4/3}
f(x) < 0 ⇔ x ∈ (–1/2; 0) ∪ (1; 4/3)
c) f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)
+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số
a = 4 > 0
Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang
dấu – nếu –1/2 < x < 1/2
+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên
luôn mang dấu –.
+ Nhị thức 2x + 9 có nghiệm x = –9/2.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)
f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}
f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)
+ Tam thức 3x2 – x có hai nghiệm x = 0 và x = 1/3, hệ số a = 3 > 0.
Do đó 3x2 – x mang dấu + khi x < 0 hoặc x > 1/3 và mang dấu –
khi 0 < x < 1/3.
+ Tam thức 3 – x2 có hai nghiệm x = √3 và x = –√3, hệ số a = –1 < 0
Do đó 3 – x2 mang dấu – khi x < –√3 hoặc x > √3 và mang dấu +
khi –√3 < x < √3.
+ Tam thức 4x2 + x – 3 có hai nghiệm x = –1 và x = 3/4, hệ số a = 4 > 0.
Do đó 4x2 + x – 3 mang dấu + khi x < –1 hoặc x > 3/4 và mang dấu –
khi –1 < x < 3/4.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 ⇔ x ∈ (–√3; –1) ∪ (0; 1/3) ∪ (3/4; √3)
f(x) = 0 ⇔ x ∈ {±√3; 0; 1/3}
f(x) < 0 ⇔ x ∈ (–∞; –√3) ∪ (–1; 0) ∪ (1/3; 3/4) ∪ (√3; +∞)
f(x) không xác định khi x = -1 và x = 3/4.
Kiến thức áp dụng
Tam thức f(x) = ax2 + bx + c có Δ = b2 – 4ac:
+ Nếu Δ < 0, f(x) cùng dấu với a với ∀ x ∈ R
+ Nếu Δ = 0, f(x) cùng dấu với a với ∀ x ≠ –b/2a.
+ Nếu Δ > 0, f(x) cùng dấu với a nếu x < x1 hoặc x > x2;
f(x) trái dấu với a nếu x1 < x < x2; trong đó x1; x2 là hai nghiệm của f(x) và x1 < x2.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét dấu các tam thức bậc hai:
a) 5x2 - 3x + 1 ; b) -2x2 + 3x + 5
c) x2 + 12x + 36 ; d) (2x - 3)(x + 5)
Tìm các giá trị của tham số m để các phương trình sau vô nghiệm
a) (m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0
b) (3 - m)x2 - 2(m + 3)x + m + 2 = 0
1) Xét tam thức bậc hai f(x) = x2 – 5x + 4. Tính f(4), f(2), f(-1), f(0) và nhận xét về dấu của chúng.
2) Quan sát đồ thị hàm số y = x2 – 5x + 4 (h.32a)) và chỉ ra các khoảng trên đó đồ thị ở phía trên, phía dưới trục hoành.
3) Quan sát các đồ thị trong hình 32 và rút ra mối liện hệ về dấu của giá trị f(x) = ax2 + bx + c ứng với x tùy theo dấu của biệt thức Δ = b2 – 4ac.
Xét dấu các tam thức
a) f(x) = 3x2 + 2x – 5;
b) g(x) = 9x2 – 24x + 16.
Giải các bất phương trình sau
a) 4x2 - x + 1 < 0
b) -3x2 + x + 4 ≥ 0
c)
d) x2 - x - 6 ≤ 0
Trong các khoảng nào
a) f(x) = -2x2 + 3x + 5 trái dấu với hệ số của x2 ?
b) g(x) = -3x2 + 7x – 4 cùng dấu với hệ số của x2 ?