Chủ nhật, 01/06/2025
IMG-LOGO

Câu hỏi:

23/07/2024 5,316

Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:

a) y = 2x3 + 3x2 - 36x - 10

b) y=x4+2x2-3;c) y = x+ 1x;d) y = x3(1-x)2; e) y = x2-x+1

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

a) TXĐ: D = R

y' = 6x2 + 6x - 36

y' = 0 ⇔ x = -3 hoặc x = 2

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đạt cực đại tại x = -3 ; y = 71

Hàm số đạt cực tiểu tại x = 2; yCT = -54.

b) TXĐ: D = R

y'= 4x3 + 4x = 4x(x2 + 1) = 0;

y' = 0 ⇔ x = 0

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực tiểu tại x = 0; yCT = -3

       hàm số không có điểm cực đại.

c) TXĐ: D = R \ {0}

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

y' = 0 ⇔ x = ±1

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực đại tại x = -1; y = -2;

       hàm số đạt cực tiểu tại x = 1; yCT = 2.

d) TXĐ: D = R

y'= (x3)’.(1 – x)2 + x3.[(1 – x)2]’

= 3x2.(1 – x)2 + x3.2(1 – x).(1 – x)’

= 3x2(1 – x)2 - 2x3(1 – x)

= x2.(1 – x)(3 – 5x)

y' = 0 ⇔ x = 0; x = 1 hoặc x = 3/5

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực đại tại x = Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

       hàm số đạt cực tiểu tại xCT = 1.

(Lưu ý: x = 0 không phải là cực trị vì tại điểm đó đạo hàm bằng 0 nhưng đạo hàm không đổi dấu khi đi qua x = 0.)

e) Tập xác định: D = R.

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực tiểu tại x = 1/2.

Kiến thức áp dụng

Quy tắc tìm điểm cực trị của hàm số y = f(x).

1. Tìm tập xác định.

2. Tính f’(x). Xác định các điểm thỏa mãn f’(x) = 0 hoặc f’(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra điểm cực trị.

(Điểm cực trị là các điểm làm cho f’(x) đổi dấu khi đi qua nó).

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Áp dụng Quy tắc 2, hãy tìm các điểm cực trị của hàm số sau:

a) y = x4 - 2x2 + 1 ;

b) y = sin2x – x

c) y = sinx + cosx ;

d) y = x5 - x3 - 2x + 1

Xem đáp án » 15/12/2021 2,905

Câu 2:

Chứng minh hàm số y = |x| không có đạo hàm tại x = 0. Hàm số có đạt cực trị tại điểm đó không ?

Xem đáp án » 15/12/2021 2,859

Câu 3:

Chứng minh hàm số y = x không có đạo hàm tại x = 0 nhưng vẫn đạt được cực tiểu tại điểm đó.

Xem đáp án » 15/12/2021 1,001

Câu 4:

Xác định giá trị của tham số m để hàm số m để hàm số y=x2+mx+1x+m đạt giá trị cực đại tại x = 2.

Xem đáp án » 15/12/2021 773

Câu 5:

Tìm a và b để các cực trị của hàm số

y=53a2x3 + 2ax2-9x+b

đều là nhưng số dương và xo = -5/9 là điểm cực đại.

Xem đáp án » 15/12/2021 603

Câu 6:

Chứng minh rằng với mọi giá trị của tham số m, hàm số

y = x3 - mx2 - 2x + 1

luôn luôn có một cực đại và một điểm cực tiểu.

Xem đáp án » 15/12/2021 413

Câu 7:

Giả sử f(x) đạt cực đại tại xo. Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số f(x0+x)-f(x0)x khi Δx → 0 trong hai trường hợp Δx > 0 và Δx < 0.

Xem đáp án » 15/12/2021 295

Câu 8:

Dựa vào đồ thị (H.7, H.8), hãy chỉ ra các điểm tại đó mỗi hàm số sau có giá trị lớn nhất (nhỏ nhất):

a) y = -x2 + 1 trong khoảng (-∞; +∞);

b) y = x/3(x+ 3)2 trong các khoảng (1/2; 3/2) và (3/2; 4).

Giải bài tập Toán 12 | Giải Toán lớp 12

Xem đáp án » 15/12/2021 143

Câu 9:

a) Sử dụng đồ thị, hãy xem xét các hàm số sau đây có cực trị hay không.

• y = -2x + 1;

• y = x/3(x-3)2 (H.8).

b) Nêu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm.

Giải bài tập Toán 12 | Giải Toán lớp 12

Xem đáp án » 15/12/2021 115

Câu 10:

Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm s f(x) = x(x^2 – 3).

Xem đáp án » 15/12/2021 110