Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Với giải sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 4
347 lượt xem


Giải sách bài tập Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bài 1 trang 129 SBT Toán 10 Tập 1: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:

a) 90; 56; 50; 45; 46; 48; 52; 43.

b) 19; 11; 1; 16; 19; 12; 14; 10; 11.

c) 6,7; 6,2; 9,7; 6,3; 6,8; 6,1; 6,2.

d) 0,79; 0,68; 0,35; 0,38; 0,05; 0,35.

Lời giải:

a) Ta có: n = 8.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Sắp xếp mẫu số liệu theo thứ tự không giảm:

43; 45; 46; 48; 50; 52; 56; 90

Khi đó, khoảng biến thiên R = 90 – 43 = 47.

Vì n = 8 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (48 + 50) : 2 = 49.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 43; 45; 46; 48.

Vậy Q1 = (45 + 46) : 2 = 45,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 50; 52; 56; 90.

Vậy Q3 = (52 + 56) : 2 = 54.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 54 – 45,5 = 8,5.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 54 + 1,5.8,5 = 66,75

Hoặc x < Q1 − 1,5∆Q = 45,5 − 1,5.8,5 = 32,75

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 90.

b) Ta có: n = 9.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Sắp xếp mẫu số liệu theo thứ tự không giảm:

1; 10; 11; 11; 12; 14; 16; 19; 19

Khi đó, khoảng biến thiên R = 19 – 1 = 18.

Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 12.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Qvì n là số lẻ: 1; 10; 11; 11.

Vậy Q1 = (10 + 11) : 2 = 10,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Qvì n là số lẻ: 14; 16; 19; 19.

Vậy Q3 = (16 + 19) : 2 = 17,5.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 17,5 – 10,5 = 7.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 17,5 + 1,5.7 = 28

Hoặc x < Q1 − 1,5∆Q = 10,5 − 1,5.7 = 0

Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.

c) Ta có: n = 7.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Sắp xếp mẫu số liệu theo thứ tự không giảm:

6,1; 6,2; 6,2; 6,3; 6,7; 6,8; 9,7

Khi đó, khoảng biến thiên R = 9,7 – 6,1 = 3,6.

Vì n = 7 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6,3.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Qvì n là số lẻ: 6,1; 6,2; 6,2.

Vậy Q1 = 6,2.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Qvì n là số lẻ: 6,7; 6,8; 9,7.

Vậy Q3 = 6,8.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 6,8 – 6,2 = 0,6.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 6,8 + 1,5.0,6 = 7,7

Hoặc x < Q1 − 1,5∆Q = 6,2 − 1,5.0,6 = 5,3

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 9,7.

d) Ta có: n = 6.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

 

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Sắp xếp mẫu số liệu theo thứ tự không giảm:

0,05; 0,35; 0,35; 0,38; 0,68; 0,79

Khi đó, khoảng biến thiên R = 0,79 – 0,05 = 0,74.

Vì n = 6 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (0,35 + 0,38) : 2 = 0,365.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 0,05; 0,35; 0,35.

Vậy Q1 = 0,35.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 0,38; 0,68; 0,79.

Vậy Q3 = 0,68.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 0,68 – 0,35 = 0,33.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 0,68 + 1,5.0,33 = 1,175

Hoặc x < Q1 − 1,5∆Q = 0,35 − 1,5.0,33 = −0,145.

Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.

Bài 2 trang 129 SBT Toán 10 Tập 1: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:

a)

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

b)

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Ta có: n = 1 + 3 + 5 + 4 + 2 + 1 = 16.

Số trung bình cộng:

x¯=0.1+4.3+6.5+9.4+10.2+17.116=11516.

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

≈ 13,4.

Sắp xếp mẫu số liệu theo thứ tự không giảm:

0; 4; 4; 4; 6; 6; 6; 6; 6; 9; 9; 9; 9; 10; 10; 17

Khi đó, khoảng biến thiên R = 17 – 0 = 17.

Vì n = 16 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (6 + 6) : 2 = 6.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 0; 4; 4; 4; 6; 6; 6; 6.

Vậy Q1 = (4 + 6) : 2 = 5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 6; 9; 9; 9; 9; 10; 10; 17.

Vậy Q3 = (9 + 9) : 2 = 9.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 9 – 5 = 4.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 9 + 1,5.4 = 15

Hoặc x < Q1 − 1,5∆Q = 5 − 1,5.4 = −1.

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 17.

b) Ta có: n = 1 + 6 + 8 + 9 + 4 + 2 = 30.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

≈ 17,74.

Sắp xếp mẫu số liệu theo thứ tự không giảm:

2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24; 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27

Khi đó, khoảng biến thiên R = 27 – 2 = 25.

Vì n = 30 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (24 + 25) : 2 = 24,5.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24.

Vậy Q1 = 24.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27.

Vậy Q3 = 25.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 25 + 1,5 = 26,5

Hoặc x < Q1 − 1,5∆Q = 24 − 1,5.1 = 22,5.

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 2 và 27.

Bài 3 trang 129, 130 SBT Toán 10 Tập 1: Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021 ở bảng sau:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu.

b) Xác định các giá trị ngoại lệ (nếu có) của mẫu số liệu.

c) Hãy tìm phương sai và độ lệch chuẩn của mẫu số liệu.

Lời giải:

a) Ta có: n = 2 + 3 + 4 + 6 + 6 + 3 + 2 + 3 + 1 + 1 = 31.

Sắp xếp mẫu số liệu theo thứ tự không giảm: 0; 0; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 5; 5; 5; 6; 6; 7; 7; 7; 12; 15.

Khi đó, khoảng biến thiên R = 15 – 0 = 15.

Vì n = 31 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 4.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Qvì n là số lẻ: 0; 0; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3.

Vậy Q1 = 2.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Qvì n là số lẻ: 4; 4; 4; 4; 4; 5; 5; 5; 6; 6; 7; 7; 7; 12; 15.

Vậy Q3 = 5.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 5 – 2 = 3.

b) Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 5 + 1,5.3 = 9,5

Hoặc x < Q1 − 1,5∆Q = 2 − 1,5.3 = −2,5

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 12 và 15.

c) Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

≈ 9,79.

Khi đó độ lệch chuẩn S = S2=9,79 3,13.

Bài 4 trang 130 SBT Toán 10 Tập 1Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: °C).

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

a) Hãy viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.

b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.

c) Hãy tìm phương sai và độ lệch chuẩn của mẫu số liệu đó.

Lời giải:

a) Ta có:

+) Nhiệt độ đạt 23°C tại các ngày: 1 và 8

+) Nhiệt độ đạt 24°C tại các ngày: 2, 3, 7 và 9

+) Nhiệt độ đạt 25°C tại các ngày: 6 và 10

+) Nhiệt độ đạt 29°C tại ngày: 5

+) Nhiệt độ đạt 32°C tại ngày: 4

Từ đó ta có mẫu số liệu thống kê nhiệt độ từ biểu đồ trên là

23; 24; 24; 32; 29; 25; 24; 23; 24; 25

b) Sắp xếp mẫu số liệu theo thứ tự không giảm:

23; 23; 24; 24; 24; 24; 25; 25; 29; 32

Khi đó, khoảng biến thiên R = 32 – 23 = 9.

Vì n = 10 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (24 + 24) : 2 = 24.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 23; 23; 24; 24; 24.

Vậy Q1 = 24.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 24; 25; 25; 29; 32.

Vậy Q3 = 25.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.

c) Số trung bình cộng:

x¯=2.23+4.24+2.25+1.29+1.3210=25,3.

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

= 7,61

Khi đó độ lệch chuẩn S = S2=7,612,76.

Bài 5 trang 130 SBT Toán 10 Tập 1: Khuê và Trọng ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/9 đến ngày 15/9 năm 2020 ở bảng sau:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

a) Hãy tìm phương sai của từng dãy số liệu.

b) Sau khi bỏ đi các giá trị ngoại lệ (nếu có), hãy so sánh, số lượng tin nhắn mỗi bạn nhận được theo số trung bình và theo trung vị.

Lời giải:

a) n = 15

+) Khuê:

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

+) Trọng:

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

b)

+) Khuê:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 3, Q3 = 5

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 5 – 3 = 2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 5 + 1,5.2 = 8

Hoặc x < Q1 − 1,5∆Q = 3 − 1,5.2 = 0

Vậy đối chiếu mẫu số liệu của Khuê suy ra không có giá trị ngoại lệ.

+) Trọng:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 2, Q3 = 4

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 4 – 2 = 2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 4 + 1,5.2 = 7

Hoặc x < Q1 − 1,5∆Q = 2 − 1,5.2 = −1

Vậy đối chiếu mẫu số liệu của Trọng suy ra giá trị ngoại lệ là 30.

Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của Khuê là:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Và của Trọng là:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Khi đó trung vị của mẫu của Khuê là 4 (Với n = 15 là số lẻ)

Và số trung vị của Trọng là (2 + 2) : 2 = 2 (Với n = 14 là số chẵn).

Vậy so sánh theo cả số trung bình và số trung vị thì Khuê có nhiều tin nhắn mỗi ngày hơn Trọng.

Bài 6 trang 130 SBT Toán 10 Tập 1: Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.

b) Sau khi bỏ đi ngày có giá bất thường, hãy cho biết giá cổ phiếu nào ổn định hơn. Tại sao?

Lời giải:

a) +) Mã cổ phiếu A:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 45,1, Q3 = 45,5

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 45,5 – 45,1 = 0,4.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 45,5 + 1,5.0,4 = 46,1

Hoặc x < Q1 − 1,5∆Q = 45,1 − 1,5.0,4 = 44,5

Vậy đối chiếu mẫu số liệu của A suy ra giá trị ngoại lệ là 35,5 và rơi vào ngày thứ 4.

+) Mã cổ phiếu B:

Áp dụng các bước tìm tứ phân vị ta dễ dàng tìm được Q1 = 47,8, Q3 = 49

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 49 – 47,8 = 1,2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 49 + 1,5.1,2 = 50,8

Hoặc x < Q1 − 1,5∆Q = 47,8 − 1,5.1,2 = 46

Vậy đối chiếu mẫu số liệu của B suy ra giá trị ngoại lệ là 68,4 và rơi vào ngày thứ 4.

b) Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của A là:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Khi đó phương sai của mẫu số liệu của A là

Và giá trị trung bình của mẫu của B là:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Khi đó phương sai của mẫu số liệu của B là

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

 

Vậy so sánh hai phương sai mẫu ta thấy 0,036 < 0,505 nên giá của mã cổ phiếu A ổn định hơn giá của mã cổ phiếu B.

Bài viết liên quan

347 lượt xem