IMG-LOGO

Câu hỏi:

19/07/2024 38

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \)\(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.


A. \(S = \frac{{13\pi {a^2}}}{2}\).



B. \(S = \frac{{13\pi {a^2}}}{3}\).


Đáp án chính xác


C. \(S = \frac{{11\pi {a^2}}}{2}\).



D. \(S = \frac{{11\pi {a^2}}}{3}\).


 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm (ảnh 1)

Gọi I, J lần lượt là tâm đường tròn ngoại tiếp hình chữ nhật ABCD và tam giác SAB.

Gọi M là trung điểm của AB và O là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có JM AB và IM AB.

Mà (SAB) (ABCD).

Do đó IM JM     (1)

Ta có O là tâm của mặt cầu ngoại tiếp hình chóp.

Suy ra OI (ABCD).

Do đó OI IM      (2)

Ta có O là tâm của mặt cầu ngoại tiếp hình chóp.

Suy ra OJ (SAB).

Do đó OJ JM     (3)

Từ (1), (2), (3), suy ra bốn điểm O, J, M, I đồng phẳng và tứ giác OJMI là hình chữ nhật (do có 3 góc ở đỉnh là góc vuông).

Gọi R, Rb lần lượt là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD và bán kính đường tròn ngoại tiếp tam giác SAB.

Áp dụng định lí Pytago, ta được: \(I{A^2} = \frac{{A{C^2}}}{4} = \frac{{B{D^2}}}{4} = \frac{{A{B^2} + A{D^2}}}{4} = \frac{{{a^2} + 3{a^2}}}{4} = {a^2}\).

Áp dụng định lí sin trong tam giác SAB, ta được: \({R_b} = \frac{{AB}}{{2\sin \widehat {ASB}}} = \frac{a}{{2.\sin 60^\circ }} = \frac{{a\sqrt 3 }}{3}\).

Ta có \(R = SO = \sqrt {S{J^2} + O{J^2}} = \sqrt {R_b^2 + I{M^2}} = \sqrt {R_b^2 + I{A^2} - A{M^2}} \).

\( = \sqrt {R_b^2 + I{A^2} - \frac{{A{B^2}}}{4}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2} + {a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt {39} }}{6}\).

Vậy diện tích khối cầu ngoại tiếp hình chóp S.ABCD là: \(S = 4\pi {R^2} = \frac{{13\pi {a^2}}}{3}\).

Do đó ta chọn phương án B.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với a, b, c là các số thực không âm thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của P = a + 2b2 + 3c3.

Xem đáp án » 29/03/2024 75

Câu 2:

Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 29/03/2024 71

Câu 3:

Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.

Xem đáp án » 29/03/2024 66

Câu 4:

Hỏi phương trình 3x2 – 6x + ln(x + 1)3 + 1 = 0 có bao nhiêu nghiệm phân biệt?

Xem đáp án » 29/03/2024 66

Câu 5:

Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).

Xem đáp án » 29/03/2024 62

Câu 6:

Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.

Xem đáp án » 29/03/2024 58

Câu 7:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.

Xem đáp án » 29/03/2024 54

Câu 8:

Vẽ \[\widehat {xOy} = 50^\circ \]. Lấy điểm M thuộc Ox sao cho OM = 6 cm. Vẽ đường thẳng d là trung trực của đoạn thẳng OM.

Xem đáp án » 29/03/2024 42

Câu 9:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được số mới gấp 25 lần số cũ.

Khi đó, tìm số thập phân biểu diễn phân số \(\frac{x}{{100}}\).

Xem đáp án » 29/03/2024 40

Câu 10:

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).

Xem đáp án » 29/03/2024 39

Câu 11:

Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.

Xem đáp án » 29/03/2024 39

Câu 12:

Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.

Xem đáp án » 29/03/2024 38

Câu 13:

Cho hàm số \(y = f\left( x \right) = \frac{{12}}{x}\).

a) Tính f(5) và f(–3).

b) Hãy điền giá trị tương ứng của hàm số vào bảng sau:

x

6

4

3

2

5

8

12

\(f\left( x \right) = \frac{{12}}{x}\)

?

?

?

?

?

?

?

Xem đáp án » 29/03/2024 37

Câu 14:

Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem đáp án » 29/03/2024 37

Câu 15:

Tổng của ba số bằng 13,68. Biết rằng tổng của số thứ nhất và số thứ hai bằng 5,79; tổng của số thứ hai và số thứ ba bằng 12,45. Tìm ba số đó.

Xem đáp án » 29/03/2024 37

Câu hỏi mới nhất

Xem thêm »
Xem thêm »