Hỏi phương trình 3x2 – 6x + ln(x + 1)3 + 1 = 0 có bao nhiêu nghiệm phân biệt?
A. 2.
B. 1.
C. 3.
D. 4.
Đáp án đúng là: C
Điều kiện: x > –1.
Ta có 3x2 – 6x + ln(x + 1)3 + 1 = 0.
⇔ 3x2 – 6x + 3ln(x + 1) + 1 = 0.
Đặt f(x) = 3x2 – 6x + 3ln(x + 1) + 1.
Suy ra \(f'\left( x \right) = 6x - 6 + \frac{3}{{x + 1}}\).
Cho \(f'\left( x \right) = 0 \Leftrightarrow 6x - 6 + \frac{3}{{x + 1}} = 0\).
⇔ 6(x – 1)(x + 1) + 3 = 0.
⇔ 2x2 – 1 = 0.
\( \Leftrightarrow x = \pm \frac{{\sqrt 2 }}{2}\).
Bảng biến thiên:
Quan sát bảng biến thiên, ta thấy đồ thị hàm số y = f(x) cắt đường thẳng y = 0 tại 3 điểm phân biệt.
Do đó phương trình f(x) = 0 có 3 nghiệm phân biệt.
Vậy ta chọn phương án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Với a, b, c là các số thực không âm thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của P = a + 2b2 + 3c3.
Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.
Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).
Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).
Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.
Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.
Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được số mới gấp 25 lần số cũ.
Khi đó, tìm số thập phân biểu diễn phân số \(\frac{x}{{100}}\).
Vẽ \[\widehat {xOy} = 50^\circ \]. Lấy điểm M thuộc Ox sao cho OM = 6 cm. Vẽ đường thẳng d là trung trực của đoạn thẳng OM.
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).
Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.
Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.
a) Chứng minh rằng ABDC là hình thang vuông.
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.
c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.
d) AM = R. Tính diện tích tứ giác ACDB theo R.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.
Cho hàm số \(y = f\left( x \right) = \frac{{12}}{x}\).
a) Tính f(5) và f(–3).
b) Hãy điền giá trị tương ứng của hàm số vào bảng sau:
x |
6 |
4 |
3 |
2 |
5 |
8 |
12 |
\(f\left( x \right) = \frac{{12}}{x}\) |
? |
? |
? |
? |
? |
? |
? |