Lời giải
y2 = x(x + 1)(x + 7)(x + 8) ⟺ y2 = (x2 + 8x)( x2 + 8x + 7)
Đặt t = x2 + 8x, ta có: y2 = t(t + 7) = t2 + 7t
⟺ 4y2 = 4t2 + 28t + 49 – 49
⟺ (2t + 7)2 – 4y2 = 49
⟺ (2t + 7 – 2y)(2t + 7 + 2y) = 49 = 7.7
\( \Leftrightarrow \left[ \begin{array}{l}2t + 7 - 2y = 7\\2t + 7 + 2y = 7\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}2{x^2} + 16x + 7 - 2y = 7\\2{x^2} + 16x + 7 + 2y = 7\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}2{x^2} + 16x - 2y = 0\\2{x^2} + 16x + 2y = 0\end{array} \right.\)
Vậy nghiệm của phương trình là: (–8; 0), (0; 0).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.
Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:
a) 3 điểm O, M, D thẳng hàng.
b) Tam giác COD là tam giác cân.
c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.
Cho tứ diện S.ABC có đáy là tam giác đều ABC có đường cao AH = 2a. Gọi O là trung điểm AH, SO vuông góc mp(ABC) và SO = 2a. Gọi I là một điểm trên OH, đặt AI = x (a < x < 2a) và (α) là mặt phẳng qua I và (α) vuông góc AH.
a) Xác định thiết diện của (α) với tứ diện S.ABC.
b) Tính diện tích thiết diện của (α) và S.ABC theo a và x.