Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC .
a) Chứng minh rằng các tứ giác AODE, BOCF là hình vuông
b) Nối EC cắt DF tại I. Chứng minh rằng OI ^ CD
c) Biết diện tích hình lục giác ABFCDE = 6. Tính độ dài các cạnh của hình vuông ABCD
d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC
a) Gọi giao điểm của AD và EO là T
Giao điểm của BC và OF là H
Xét tứ giác EAOD có
\(\left. \begin{array}{l}AT = TD\\ET = TO\end{array} \right\} \Rightarrow EAOD\) là hình bình hành (dấu hiệu nhận biết).
Mà AD ^ EO nên tứ giác EAOD là hình thoi.
Hình thoi EAOD có \[\widehat {AOD} = 90^\circ \] nên là hình vuông.
Vậy EAOD là hình vuông theo dấu hiệu nhận biết hình thoi có 1 góc vuông.
Chứng minh tương tự với tứ giác OBFC.
b) Xét 2 tam giác ECF và FDE có:
\(\widehat {CFE} = \widehat {DEF} = 45^\circ \)
EF chung
FC = DE
Þ ΔECF = ∆FDE (c.g.c)
\( \Rightarrow \widehat {FEC} = \widehat {EFD}\)
Vậy tam giác EFI cân.
Mà O là trung điểm của EF Þ OI ^ EF (trong tam giác cân đường trung tuyến cũng là đường cao)
c) Ta có: ΔAED = ∆ABO = ∆BCO = ∆COD = ∆DOA = ∆BFC
SAED + SABO + SBCO + SCOD + SDOA + SBFC = SABFCDE = 6
Þ SABO = SBCO = SCOD = SDOA = 1
Þ SABCD = SABO + SBCO + SCOD + SDOA = 4
\( \Rightarrow AB = BC = CD = AD = \sqrt 4 = 2\)
d) Gọi M là giao điểm của IO với AB, N là giao điểm của IM với AK, ta có:
IO ^ FE Þ IO ^ AB Þ OM ^ AB, mà O là trung điểm của của HT nên M là trung điểm của AB.
Xét tam giác ABK có:
MA = MB (cmt)
MN // BK (vì MO // CD)
Do đó NA = NK
Þ N là trung điểm của AK
Þ IN là đường trung tuyến của ∆AIK.
Mà G là trọng tậm tam giác nên G Î IN
Þ G Î M với IM cố định (I, M cố định).
Vậy điểm G luôn nằm trên đường thẳng cố định IM.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.
Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).
Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).
Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.
Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành: ABIJ, BCPQ, CARS. Chứng minh rằng \(\overrightarrow {RJ} + \overrightarrow {IQ} + \overrightarrow {PQ} = \overrightarrow 0 \)
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.