Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 50

Giải phương trình:

a) sin 5x + sin 8x + sin 3x = 0;

b) \(4{\cos ^3}x + 3\sqrt 2 \sin 2x = 8\cos x\).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

a) sin 5x + sin 8x + sin 3x = 0

Û 2sin 4x.cos x + 2sin 4x.cos 4x = 0

Û 2sin 4x(cos x + cos 4x) = 0

\( \Leftrightarrow 4\sin 4x\,.\,\cos \frac{{5x}}{2}\cos \frac{{3x}}{2} = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin 4x = 0\\\cos \frac{{5x}}{2} = 0\\\cos \frac{{3x}}{2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k\pi \\\frac{{5x}}{2} = \frac{\pi }{2} + k\pi \\\frac{{3x}}{2} = \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{4}\\x = \frac{\pi }{5} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\end{array} \right.\)

Vậy \(x = \frac{{k\pi }}{4},\;x = \frac{\pi }{5} + \frac{{k2\pi }}{5},\;x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\;\left( {k \in \mathbb{Z}} \right)\)

b) \(4{\cos ^3}x + 3\sqrt 2 \sin 2x = 8\cos x\)

\( \Leftrightarrow 2\cos x\left( {2{{\cos }^2}x + 3\sqrt 2 \sin x - 4} \right) = 0\)

\( \Leftrightarrow 2\cos x\left( { - 2{{\sin }^2}x + 3\sqrt 2 \sin x - 2} \right) = 0\)

 

Vậy \(x = \frac{\pi }{2} + k\pi ,\;x = \frac{\pi }{4} + k2\pi ,\;x = \frac{{3\pi }}{4} + k2\pi \;\left( {k \in \mathbb{Z}} \right)\)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 03/04/2024 87

Câu 2:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 03/04/2024 85

Câu 3:

Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC

a) Chứng minh AM.AB = AN.AC.

b) Chứng minh tam giác AMN đồng dạng tam giác ACB.

Xem đáp án » 03/04/2024 65

Câu 4:

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?

Xem đáp án » 03/04/2024 65

Câu 5:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 03/04/2024 62

Câu 6:

Cho tam giác ABC nhọn (AB < AC), đường cao AH. Gọi M, N lần lượt là hình chiếu

Xem đáp án » 03/04/2024 59

Câu 7:

Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.

Xem đáp án » 03/04/2024 59

Câu 8:

Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.

Xem đáp án » 04/04/2024 58

Câu 9:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 03/04/2024 58

Câu 10:

Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).

Xem đáp án » 04/04/2024 57

Câu 11:

Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành: ABIJ, BCPQ, CARS. Chứng minh rằng \(\overrightarrow {RJ} + \overrightarrow {IQ} + \overrightarrow {PQ} = \overrightarrow 0 \)

Xem đáp án » 03/04/2024 56

Câu 12:

Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).

Xem đáp án » 03/04/2024 56

Câu 13:

Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.

Xem đáp án » 03/04/2024 56

Câu 14:

Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.

Xem đáp án » 04/04/2024 55

Câu 15:

Dùng hệ thức Vi-ét để tìm nghiệm x2 của phương trình rồi tìm giá trị của m trong mỗi trường hợp sau: Phương trình x2 + mx − 35 = 0 có nghiệm  x1 = 7.

Xem đáp án » 03/04/2024 55

Câu hỏi mới nhất

Xem thêm »
Xem thêm »