Cho nửa đường tròn đường kính AB, dây CD. Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ A, B đến CD
a) Chứng minh rằng: CH = DK
b) Chứng minh rằng: SAHKB = SACB + SADB
c) Tính diện tích lớn nhất của tứ giác AHKB, biết AB = 30 cm, CD = 18 cm
a) Gọi O là tâm đường tròn đường kính AB
Kẻ OE vuông góc với CD (E thuộc CD)
Suy ra E là trung điểm của CD
Mà OE là đường trung bình của hình thang ABKH (đi qua trung điểm một cạnh bên và song song với cạnh đáy)
Þ EH = EK mà EC = ED
Suy ra CH = DK (đpcm)
b) Hạ CG, DF ^ AB tại G, F
Þ CG // DF
Þ Tứ giác CDGF là hình thang.
Lấy I là trung điểm của GF.
Xét hình thang CDGF có:
EC = ED (E là trung điểm của CD)
IG = IF (I là trung điểm của GF)
Þ EI là đường trung bình của hình thang CDFG
\( \Rightarrow EI = \frac{{DF + CG}}{2}\)
Ta có: \[{S_{ACB}} + {S_{ADB}} = \frac{{AB + CG}}{2} + \frac{{AB + DF}}{2} = AB\,.\,\frac{{CG + DF}}{2} = AB\,.\,EI\] (1)
Qua E kẻ đường thẳng song song với AB cắt AH, BK lần lượt ở M, N.
Dễ thấy tứ giác AMNB là hình bình hành (vì có 2 cặp cạnh đối song song )
Þ SAMNB = AB.EI
Xét ∆MHE và ∆NKE có:
\(\widehat {MEH} = \widehat {NEK}\) (2 góc đối đỉnh)
\(\widehat {MHE} = \widehat {NKE} = 90^\circ \)
EM = EN
Do đó ∆HEM = ∆KEN (cạnh huyền – góc nhọn)
Þ SHEM = SKEN
Khi đó:
SAHKB = SAMEKB + SMHE = SAMEKB + SENK = SAMNB = AB.EI (2)
Từ (1) và (2) Þ SAHKB = SACB + SADB
c) \({S_{AHKB}} = \frac{{\left( {AH + BK} \right)\,.\,HK}}{2} = \frac{{2OE\,.\,HK}}{2} = OE\,.\,HK\)
\(OE = \sqrt {O{D^2} - E{D^2}} = \sqrt {{{15}^2} - {9^2}} = 12\)
Þ S = 12.HK ≤ 12.AB = 12.30 = 360
Þ Smax = 360.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.
Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).
Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.
Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành: ABIJ, BCPQ, CARS. Chứng minh rằng \(\overrightarrow {RJ} + \overrightarrow {IQ} + \overrightarrow {PQ} = \overrightarrow 0 \)