Cho nửa đường tròn (O) đường kính AB. M là trung điểm OA. N là điểm bất kỳ thuộc nửa đường tròn. Qua N kẻ đường thẳng vuông góc với MN cắt các tiếp tuyến tại A và B tại C và D. Tìm vị trí của N để diện tích tam giác DMC min.
Tứ giác AMNC có \(\widehat {MAC} + \widehat {MNC} = 90^\circ + 90^\circ = 180^\circ \) nên tứ giác AMNC là tứ giác nội tiếp đường tròn
Khi đó \(\widehat {CNM} = \widehat {CMA}\) (Hai góc cùng chắn cung CA)
Chứng minh tương tự ta được MBDN là tứ giác nội tiếp nên suy ra
\(\widehat {DNB} = \widehat {DMB}\) (Hai góc cùng chắn cung DB)
Suy ra \(\widehat {CNM} + \widehat {DNB} = \widehat {CMA} + \widehat {DMB}\)
\( \Rightarrow 180^\circ - \left( {\widehat {CNM} + \widehat {DNB}} \right) = 180^\circ - \left( {\widehat {CMA} + \widehat {DMB}} \right)\)
\( \Rightarrow \widehat {ANB} = \widehat {CMD} \Rightarrow \widehat {CMD} = 90^\circ \Rightarrow CM \bot DM\)
Suy ra \[\widehat {CMA} + \widehat {DMB} = 90^\circ \]
Mà \[\widehat {CMA} + \widehat {ACM} = 90^\circ \]
Do đó \(\widehat {ACM} = \widehat {BMD}\)
Xét ∆ACM và ∆BMD có:
\(\widehat {ACM} = \widehat {BMD}\) (cmt)
\(\widehat {CAM} = \widehat {MBD} = 90^\circ \)
Suy ra ∆ACM ᔕ ∆BMD (g.g)
\( \Rightarrow \frac{{AM}}{{BD}} = \frac{{AC}}{{BM}} \Rightarrow AM\,.\,BM = BD\,.\,AC\) (không đổi)
Theo Bunhiacopxki, ta có:
(AM.BM + AC.BD)2 ≤ (AM2 + AC2)(BM2 + BD2) = MC2.MD2 = 4(SDMC)2
Þ SDMC đạt giá trị nhỏ nhất khi AC = AM, BD = BM
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.
Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).
Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.
Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành: ABIJ, BCPQ, CARS. Chứng minh rằng \(\overrightarrow {RJ} + \overrightarrow {IQ} + \overrightarrow {PQ} = \overrightarrow 0 \)