Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).
Ta có: sin α = sin (180° − α)
SABCD = SIAB + SIBC + SICD + SIDA
\( = \frac{1}{2}IA\,.\,IB\,.\,\sin \widehat {AIB} + \frac{1}{2}IB\,.\,IC\,.\,\sin \widehat {BIC} + \frac{1}{2}IC\,.\,ID\,.\,\sin \widehat {CID} + \frac{1}{2}ID\,.\,IA\,.\,\sin \widehat {DIA}\)
\( = \frac{1}{2}IA\,.\,IB\,.\,\sin \alpha + \frac{1}{2}IB\,.\,IC\,.\,\sin \alpha + \frac{1}{2}IC\,.\,ID\,.\,\sin \alpha + \frac{1}{2}ID\,.\,IA\,.\,\sin \alpha \)
\( = \frac{1}{2}\sin \alpha \left( {IA\,.\,IB\, + IB\,.\,IC\, + IC\,.\,ID\, + ID\,.\,IA} \right)\)
\[ = \frac{1}{2}\sin \alpha \left[ {IB\,\left( {IA\, + IC} \right)\, + ID\,\left( {IA\, + IC} \right)\,} \right]\]
\[ = \frac{1}{2}\sin \alpha \left( {IB + ID} \right)\left( {IA\, + IC} \right)\]
\[ = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \] (đpcm)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.
Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).
Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AC.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD.Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C.
a) Chứng minh tứ giác ACED là hình bình hành.
b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi.
c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)