IMG-LOGO

Câu hỏi:

17/07/2024 34

Cho phương trình \[\sin \left( {2x - \frac{{\rm{\pi }}}{4}} \right) = \sin \left( {x + \frac{{3{\rm{\pi }}}}{4}} \right)\]. Tính tổng các nghiệm thuộc khoảng (0; π) của phương trình trên.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[\sin \left( {2x - \frac{{\rm{\pi }}}{4}} \right) = \sin \left( {x + \frac{{3{\rm{\pi }}}}{4}} \right)\]

\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{4} = x + \frac{{3\pi }}{4} + k2\pi \\2x - \frac{\pi }{4} = \pi - x - \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pi + k2\pi \\x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

+ Xét x = p + k2p (k Î ℤ)

Do 0 < x < p Û 0 < p + k2p < p

\( \Leftrightarrow - \frac{1}{2} < k < 0\)

Vì k Î ℤ nên không có giá trị k nào thỏa mãn.

+ Xét \(x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\;\left( {k \in \mathbb{Z}} \right)\)

Do \(0 < x < \pi \Leftrightarrow 0 < \frac{\pi }{6} + \frac{{k2\pi }}{3} < \pi \;\)

\( \Leftrightarrow \frac{{ - 1}}{4} < k < \frac{5}{4}\)

Vì k Î ℤ nên k = 0 và k = 1

Với \(k = 0 \Rightarrow x = \frac{\pi }{6}\)

Với \(k = 1 \Rightarrow x = \frac{{5\pi }}{6}\)

Do đó trên khoảng (0; p) phương trình có hai nghiệm \(x = \frac{\pi }{6},\;x = \frac{{5\pi }}{6}\)

Vậy tổng các nghiệm của phương trình là: \(\frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 03/04/2024 87

Câu 2:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 03/04/2024 85

Câu 3:

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?

Xem đáp án » 03/04/2024 65

Câu 4:

Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC

a) Chứng minh AM.AB = AN.AC.

b) Chứng minh tam giác AMN đồng dạng tam giác ACB.

Xem đáp án » 03/04/2024 64

Câu 5:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 03/04/2024 62

Câu 6:

Cho tam giác ABC nhọn (AB < AC), đường cao AH. Gọi M, N lần lượt là hình chiếu

Xem đáp án » 03/04/2024 59

Câu 7:

Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.

Xem đáp án » 03/04/2024 59

Câu 8:

Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.

Xem đáp án » 04/04/2024 58

Câu 9:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 03/04/2024 58

Câu 10:

Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).

Xem đáp án » 04/04/2024 57

Câu 11:

Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).

Xem đáp án » 03/04/2024 56

Câu 12:

Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.

Xem đáp án » 03/04/2024 56

Câu 13:

Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.

Xem đáp án » 04/04/2024 55

Câu 14:

Dùng hệ thức Vi-ét để tìm nghiệm x2 của phương trình rồi tìm giá trị của m trong mỗi trường hợp sau: Phương trình x2 + mx − 35 = 0 có nghiệm  x1 = 7.

Xem đáp án » 03/04/2024 55

Câu 15:

Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.

a) Chứng minh tứ giác BDEF là hình thoi.

b) Chứng minh AC = DE.

c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AC.

d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD.

Xem đáp án » 03/04/2024 55

Câu hỏi mới nhất

Xem thêm »
Xem thêm »