Cho phương trình \[\sin \left( {2x - \frac{{\rm{\pi }}}{4}} \right) = \sin \left( {x + \frac{{3{\rm{\pi }}}}{4}} \right)\]. Tính tổng các nghiệm thuộc khoảng (0; π) của phương trình trên.
\[\sin \left( {2x - \frac{{\rm{\pi }}}{4}} \right) = \sin \left( {x + \frac{{3{\rm{\pi }}}}{4}} \right)\]
\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{4} = x + \frac{{3\pi }}{4} + k2\pi \\2x - \frac{\pi }{4} = \pi - x - \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pi + k2\pi \\x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
+ Xét x = p + k2p (k Î ℤ)
Do 0 < x < p Û 0 < p + k2p < p
\( \Leftrightarrow - \frac{1}{2} < k < 0\)
Vì k Î ℤ nên không có giá trị k nào thỏa mãn.
+ Xét \(x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\;\left( {k \in \mathbb{Z}} \right)\)
Do \(0 < x < \pi \Leftrightarrow 0 < \frac{\pi }{6} + \frac{{k2\pi }}{3} < \pi \;\)
\( \Leftrightarrow \frac{{ - 1}}{4} < k < \frac{5}{4}\)
Vì k Î ℤ nên k = 0 và k = 1
Với \(k = 0 \Rightarrow x = \frac{\pi }{6}\)
Với \(k = 1 \Rightarrow x = \frac{{5\pi }}{6}\)
Do đó trên khoảng (0; p) phương trình có hai nghiệm \(x = \frac{\pi }{6},\;x = \frac{{5\pi }}{6}\)
Vậy tổng các nghiệm của phương trình là: \(\frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Trong mặt phẳng tọa độ Oxy cho 4 điểm A(0; 1); B(1; 3); C(2; 7) và D(0; 3). Tìm giao điểm của 2 đường thẳng AC và BD.
Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).
Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).
Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AC.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD.