Lời giải
Đáp án đúng là: C
Hàm số đã cho xác định với mọi x ∈ ℝ.
Điều kiện của bài toán trở thành:
\(m = f\left( \pi \right) = \mathop {\lim }\limits_{x \to \pi } f\left( x \right) = \mathop {\lim }\limits_{x \to \pi } \frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}}\).
\( = \mathop {\lim }\limits_{x \to \pi } \frac{{2{{\cos }^2}\frac{x}{2}}}{{{{\left( {x - \pi } \right)}^2}}} = \mathop {\lim }\limits_{x \to \pi } \frac{{2{{\sin }^2}\left( {\frac{x}{2} - \frac{\pi }{2}} \right)}}{{{{\left( {x - \pi } \right)}^2}}} = \mathop {\lim }\limits_{x \to \pi } \frac{{\frac{1}{4}.2{{\sin }^2}\left( {\frac{x}{2} - \frac{\pi }{2}} \right)}}{{\frac{1}{4}.{{\left( {x - \pi } \right)}^2}}}\)
\( = \mathop {\lim }\limits_{x \to \pi } \frac{{\frac{1}{2}{{\sin }^2}\left( {\frac{{x - \pi }}{2}} \right)}}{{{{\left( {\frac{{x - \pi }}{2}} \right)}^2}}} = \frac{1}{2}\mathop {\lim }\limits_{x \to \pi } {\left[ {\frac{{\sin \left( {\frac{{x - \pi }}{2}} \right)}}{{\left( {\frac{{x - \pi }}{2}} \right)}}} \right]^2}\) (*)
Đặt \(t = \frac{{x - \pi }}{2} \to 0\) khi x → π.
Khi đó (*) trở thành: \(m = \frac{1}{2}\mathop {\lim }\limits_{x \to \pi } {\left( {\frac{{\sin t}}{t}} \right)^2} = \frac{1}{2}{.1^2} = \frac{1}{2}\).
Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC vuông tại A, có AH là đường cao, AM là đường trung tuyến. Qua B kẻ đường thẳng vuông góc với AM tại I cắt AC tại E.
a) Chứng minh BI.BE = 2BH.BM.
b) Chứng minh \(\frac{1}{{A{B^2}}} = \frac{1}{{B{E^2}}} + \frac{1}{{B{C^2}}}\).
Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC.
a) Chứng minh: AH.BC = AB.AC.
b) Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Chứng minh rằng: MA2 = MB.MC.
c) Kẻ HE vuông góc với AB (E thuộc AB) và HF vuông góc với AC (F thuộc AC). Chứng minh AM // EF.
Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lí, 6 học sinh vừa giỏi Lí và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó có 11 học sinh giỏi đúng 2 môn. Hỏi có bao nhiêu học sinh trong lớp:
a) Giỏi cả ba môn.
b) Giỏi đúng 1 môn.