Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 1 = 0. Mặt cầu có tâm thuộc tia Ox, bán kính bằng 2 và tiếp xúc với (P) có phương trình
A. (x – 5)2 + y2 + z2 = 4;
B. (x + 5)2 + y2 + z2 = 4;
C. (x – 7)2 + y2 + z2 = 4;
Đáp án đúng là: C
Gọi (S) là phương trình mặt cầu cần tìm có tâm thuộc tia Ox nên I(a; 0; 0) (a ≥ 0).
(S) tiếp xúc với mặt phẳng (P): x – 2y + 2z – 1 = 0 nên khoảng cách d(I; (P)) = R
Û = 2
Û = 2
Û |a – 1| = 6
Û
Do a ≥ 0 nên ta lấy a = 7
Vậy (S) : (x – 7)2 + y2 + z2 = 4.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?
Cho hàm số f(x) liên tục trên đoạn [1; 3]. Biết F(x) là nguyên hàm của f(x) trên đoạn [1; 3] thỏa mãn F(1) = −2 và F(3) = 5. Khi đó bằng
Biết rằng = aln2 + bln3 + cln5, với a, b, c ∈ ℚ. Giá trị a + b + c bằng
Gọi z1 , z2 là hai nghiệm phức của phương trình z2 – 3z + 5 = 0. Môđun của số phức (2 − 3)(2 − 3) bằng
Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y − 2)2 + (z + 1)2 = 6, tiếp xúc với hai mặt phẳng (P): x + y + 2z + 5 = 0 và (Q): 2x – y + z – 5 = 0 lần lượt tại hai điểm A và B. Độ dài đoạn thẳng AB bằng
Trong không gian Oxyz, cho hai điểm A(10; 6; −2), B(5; 10; −9) và mặt phẳng (α): 2x + 2y + z – 12 = 0. Điểm M thay đổi thuộc mặt phẳng (α) sao cho hai đường thẳng MA và MB luôn tạo với (α) các góc bằng nhau. Biết rằng điểm M luôn thuộc một đường tròn cố định. Hoành độ của tâm đường tròn đó bằng