Tìm số trung bình, trung vị, mốt và tứ phân vị của mỗi mẫu số liệu sau
Giải Toán lớp 10 Bài 13: Các số đặc trưng đo xu thế trung tâm
Bài 5.7 trang 82 Toán 10 tập 1: Tìm số trung bình, trung vị, mốt và tứ phân vị của mỗi mẫu số liệu sau đây:
a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:
9 8 15 8 20
b) Giá của một số loại giày (đơn vị nghìn đồng):
350 300 650 300 450 500 300 250
c) Số kênh được chiếu của một số hãng truyền hình cáp:
36 38 33 34 32 30 34 35
Lời giải:
a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:
9 8 15 8 20
Số trung bình:
Trung vị:
Mẫu số liệu sắp xếp theo thứ tự không giảm, ta được:
8; 8; 9; 15; 20
Ta có n = 5 là số lẻ nên trung vị là 9.
∙ Mốt:
Ta thấy số 8 là số có tần số lớn nhất (xuất hiện 2 lần).
Do đó mốt của số liệu là 8.
∙ Tứ phân vị:
+ Tìm Q2.
Ta có trung vị là 9 nên Q2 = 9.
+ Tìm Q1.
Nửa số liệu bên trái là: 8 8
Trung vị của mẫu này là: (8 + 8) : 2 = 8
Do đó Q1 = 8.
+ Tìm Q3.
Nửa số liệu bên phải là: 15 20
Trung vị của mẫu này là: (15 + 20) : 2 = 17,5.
Do đó Q3 = 17,5.
Vậy số trung bình là 12; trung vị là 9; mốt là 8; Q1 = 8; Q3 = 17,5.
b) Giá của một số loại giày (đơn vị nghìn đồng):
350 300 650 300 450 500 300 250
∙ Số trung bình:
∙ Trung vị:
Mẫu số liệu sắp xếp theo thứ tự không giảm ta được:
250; 300; 300; 300; 350; 450; 500; 650.
Ta có n = 8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.
Số trung bình cộng của hai giá trị ở chính giữa là:
(300 + 350) : 2 = 325.
Do đó trung vị là 325.
∙ Mốt:
Ta thấy số 300 là số có tần số cao nhất (xuất hiện 3 lần).
Do đó mốt của dãy số liệu là 300.
∙ Tứ phân vị:
+ Tìm Q2.
Ta có trung vị là 325.
Do đó Q2 = 325.
+ Tìm Q1.
Vì n chẵn nên nửa số liệu bên trái là: 250 300 300 300
Trung vị của mẫu này là: (300 + 300) : 2 = 300
Do đó Q1 = 300.
+ Tìm Q3.
Vì n chẵn nên nửa số liệu bên phải là: 350 450 500 650
Trung vị của mẫu này là: (450 + 500) : 2 = 475
Do đó Q3 = 475.
Vậy số trung bình là 387,5; trung vị là 325; mốt là 300; Q1 = 300; Q3 = 475.
c) Số kênh được chiếu của một số hãng truyền hình cáp:
36 38 33 34 32 30 34 35
∙ Số trung bình:
∙ Trung vị:
Sắp xếp theo thứ tự không giảm: 30 32 33 34 34 35 36 38
Ta có n = 8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.
Hai số chính giữa là 34 và 34.
Do đó trung vị là: (34 + 34) : 2 = 34.
∙ Mốt:
Ta thấy số 34 là số có tần số cao nhất (xuất hiện 2 lần).
Do đó mốt của dãy số liệu là 34.
∙ Tứ phân vị:
+ Tìm Q2.
Ta có trung vị là 34.
Do đó Q2 = 34.
+ Tìm Q1.
Vì n chẵn nên nửa số liệu bên trái là: 30 32 33 34
Trung vị của mẫu này là: (32 + 33) : 2 = 32,5
Do đó Q1 = 32,5.
+ Tìm Q3.
Vì n chẵn nên nửa số liệu bên phải là: 34 35 36 38
Trung vị của mẫu này là: (35 + 36) : 2 = 35,5
Do đó Q3 = 35,5.
Vậy số trung bình là 34; trung vị là 34; mốt là 34; Q1 = 32,5; Q3 = 35,5.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
HĐ 1 trang 78 Toán 10 tập 1: Tính trung bình cộng điểm khảo sát Tiếng Anh của mỗi lớp A và B...
Luyện tập 2 trang 79 Toán 10 tập 1: Chiều dài (đơn vị feet) của 7 con cá voi trưởng thành...
HĐ 4 trang 80 Toán 10 tập 1: Điểm (thang điểm 100) của 12 thí sinh cao điểm nhất trong cuộc thi...
HĐ 5 trang 81 Toán 10 tập 1: Một cửa hàng giày thể thao đã thống kê cỡ giày của một số khách hàng...
Vận dụng trang 82 Toán 10 tập 1: Hãy tính các số đặc trưng đo xu thế trung tâm cho mẫu số liệu...
Bài 5.8 trang 82 Toán 10 tập 1: Hãy chọn số đặc trưng đo xu thế trung tâm của mỗi mẫu số liệu sau...