Giải Toán 10 Kết nối tri thức Bài tập cuối chương 4

Hamchoi.vn trân trọng giới thiệu: lời giải bài tập Toán lớp 10 Bài tập cuối chương 4 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài tập cuối chương 4. Mời các bạn đón xem:

611 lượt xem


Giải bài tập Toán 10 Bài tập cuối chương 4

A. Trắc nghiệm

Bài 4.27 trang 71 Toán 10 Tập 1Trong mặt phẳng tọa độ, cặp vectơ nào sau đây có cùng phương?

A. u=2;3 và v=12;6.

B. a=2;6 và b=1;32.

C. i=0;1 và j=1;0.

D. c=1;3 và d=2;6.

Lời giải

+) Xét hai vectơ u=2;3 và v=12;6:

Ta có: 21236 suy ra hai vectơ u và v không cùng phương.

 Do đó A sai.

+) Xét hai vectơ a=2;6 và b=1;32:

Ta có: 21=632=2 suy ra hai vectơ a và bcùng phương.

Do đó B đúng.

+) Xét hai vectơ i=0;1 và j=1;0:

Đây là hai vectơ đơn vị nên chúng vuông góc với nhau suy ra hai vectơ i và j  không cùng phương.

Do đó C sai.

+) Xét hai vectơ c=1;3 và d=2;6:

Ta có: 1236 suy ra hai vectơ c và d không cùng phương.

Do đó D sai.

Vậy ta chọn phương án B.

Bài 4.28 trang 71 Toán 10 Tập 1: Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

A. u=2;3 và v=4;6.

B. a=1;1 và b=1;1.

C. z=a;b và t=b;a.

D. n=1;1 và k=2;0.

Lời giải

+) Xét hai vectơ u=2;3 và v=4;6:

Ta có: u.v=2.4+3.6=8+18=260. 

Suy ra hai vectơ u,v không vuông góc. Do đó A sai.

+) Xét hai vectơ a=1;1 và b=1;1:

Ta có: a.b=1.1+1.1=1+1=20. 

Suy ra hai vectơ a,b không vuông góc với nhau. Do đó B sai.

+) Xét hai vectơ z=a;b và t=b;a:

Ta có: z.t=a.b+b.a=ab+ab=0. 

Suy ra hai vectơ z,t vuông góc với nhau. Do đó C đúng.

+) Xét hai vectơ n=1;1 và k=2;0:

Ta có: n.k=1.2+1.0=2+0=20. 

Suy ra hai vectơ n,k không vuông góc. Do đó D sai.

Vậy ta chọn phương án C.

Bài 4.29 trang 71 Toán 10 Tập 1: Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?

A. a=1;1.

B. b=1;1.

C. c=2;12.

D. d=12;12.

Lời giải

+) Xét vectơ a=1;1a=12+12=21. Do đó A sai.

+) Xét vectơ b=1;1b=12+12=21. Do đó B sai.

+) Xét vectơ c=2;12c=22+122=1741. Do đó C sai.

+) Xét vectơ d=12;12d=122+122=1. Do đó D đúng.

Vậy ta chọn phương án D.

Bài 4.30 trang 71 Toán 10 Tập 1Góc giữa vectơ a=1;1 và vectơ b=2;0 có số đo bằng:

A. 90°.

B. 0°.

C. 135°.

D. 45°.

Lời giải

Giải Toán 10 Bài tập cuối chương 4  - Kết nối tri thức (ảnh 1)

Vậy ta chọn phương án C.

Bài 4.31 trang 71 Toán 10 Tập 1: Khẳng định nào sau đây là đúng?

A. a.bc=ab.c.

B. a.b2=a2.b2.

C. a.b=a.b.sina,b.

D. abc=a.ba.c.

Lời giải

+) Xét phương án A:

a.bc=a.b.cosa,  bc;

ab.c=ab.c.cosb,   c.

Suy ra a.bcab.c. Do đó A sai.

+) Xét phương án B:

a.b2=a.b.cosa,b2=a2.b2.cos2a,b

a2.b2=a2.b2.

Suy ra a.b2=a2.b2 chỉ đúng khi cos2a,b=1. Do đó B sai.

+) Xét phương án C:

a.b=a.b.cosa,ba.b.sina,b.

Do đó C sai.

+)Xét phương án D:

Theo tính chất của tích vô hướng ta có:

 abc=a.ba.c (tính chất phân phối đối với phép trừ).

Vậy ta chọn phương án D.

Bài 4.32 trang 71 Toán 10 Tập 1Cho hình vuông ABCD có cạnh a. Khẳng định nào sau đây là đúng?

A. AB,BD=45°.

B. AC.BC=a2.

C. AC.BD=a22.       

D. BA.BD=a2.

Lời giải

Cho hình vuông ABCD có cạnh a. Khẳng định nào sau đây là đúng (ảnh 1)

ABCD là hình vuông cạnh a nên AB = BC = CD = DA = a;

Và BD=AC=AB2+BC2=a2+a2=a2 

Lấy điểm M và N sao cho ABDM, ABNC là các hình bình hành.

+) Vì ABDM là hình bình hành nên BD=AM

AB,BD=AB,AM=BAM^=90°+45°=135°. 

Do đó A sai.

+) Vì ABNC là hình bình hành nên AC=BN

AC,BC=BN,BC=CBN^=45°

AC.BC=AC.BC.cosCBF^=a2.a.cos450=a2.

Do đó B đúng.

+) Ta có ACBDACBDAC.BD=0.

Do đó C sai.

+) Ta có:

BA.BD=BA.BD.cosBA,BD=BA.BD.cosABD^=a.a2.cos450=a2. 

Do đó D sai.

B. Tự luận

Bài 4.33 trang 71 Toán 10 Tập 1: Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3MC.

a) Tìm mối liên hệ giữa hai vectơ MB và MC.

b) Biểu thị vectơ AM theo hai vectơ AB và AC.

Lời giải

Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3MC (ảnh 1)

a) Vì điểm M nằm trên cạnh BC nên hai vectơ MB và MC là hai vectơ ngược hướng.

Lại có MB = 3MC nên MB=3MC.

Vậy MB=3MC.

b) Theo câu a: MB=3MCMB=3CM=34CB=34BC.

Ta có: AM=AB+BM=ABMB

=AB+34BC=AB+34ACAB  (quy tắc ba điểm)

=AB+34AC34AB=14AB+34AC

Vậy AM=14AB+34AC^.

Bài 4.34 trang 72 Toán 10 Tập 1: Cho hình bình hành ABCD. Chứng minh rằng với mọi điểm M, ta có:

MA+MC=MB+MD

Lời giải

Cho hình bình hành ABCD. Chứng minh rằng với mọi điểm M, ta có (ảnh 1)

Gọi O là giao điểm của AC và BD.

Suy ra O là trung điểm của AC và BD.

OA+OC=0 và OB+OD=0

Ta có:

+) 

MA+MC=MO+OA+MO+OC=2MO+OA+OC=2MO

(Vì OA+OC=0)

+) 

MB+MD=MO+OB+MO+OD=2MO+OB+OD=2MO

 (Vì OB+OD=0)

Suy ra MA+MC=MB+MD.

Vậy MA+MC=MB+MD.

Bài 4.35 trang 72 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho A(2; 1), B(‒2; 5) và C(‒5; 2).

a) Tìm tọa độ của các vectơ BA và BC.

b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.

Lời giải

a) Với A(2; 1), B(‒2; 5) và C(‒5; 2) ta có: BA=4;4 và BC=3;3.

b) Ta có: 

BA.BC=4.3+4.3=12+12=0

BABC

BABC

ΔABC vuông tại B.

Do BA=4;4BA=42+42=42;

BC=3;3BC=32+32=32.

Với A(2; 1) và C(‒5; 2) ta có:

AC=7;1AC=72+12=50=52 

Diện tích tam giác vuông ABC là:

SΔABC=12.AB.BC=12.42.32=12 (đơn vị diện tích)

Chu vi tam giác ABC là:

AB + BC + AC = 42+32+52=122 (đơn vị độ dài)

c)  Với A(2; 1), B(‒2; 5) và C(‒5; 2) ta có tọa độ trọng tâm G của tam giác ABC là:

xG=2+2+53=53yG=1+5+23=83G53;83

Vậy tọa độ trọng tâm của tam giác ABC là: G53;83.

d)

Trong mặt phẳng tọa độ Oxy, cho A(2; 1), B(‒2; 5) và C(‒5; 2) (ảnh 1)

Để tứ giác BCAD là hình bình hành thì AC=DB

Giả sử D(x; y) là điểm cần tìm.

Với A(2; 1), B(‒2; 5) và C(‒5; 2) ta có: AC=7;1 và DB=2x;5y 

Do đó AC=DB

2x=75y=1x=5y=4D5;4.

Vậy với D(5;4) thì tứ giác BCAD là một hình bình hành.

Bài 4.36 trang 72 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 4), C(‒1; ‒2) và D(6; 5).

a) Tìm tọa độ của các vectơ AB và CD.

b) Hãy giải thích tại sao các vectơ AB và CD cùng phương.

c) Giả sử E là điểm có tọa độ (a; 1). Tìm a để vectơ AC và BE cùng phương.

d) Với a tìm được, hãy biểu thị vectơ AE theo các vectơ AB và AC.

Lời giải

a) Với A(1; 2), B(3; 4), C(‒1; ‒2) và D(6; 5) ta có: AB=2;2 và CD=7;7.

b) Xét hai vectơ AB=2;2 và CD=7;7:

Ta có: 72=72 nên hai vectơ AB và CD cùng phương.

Vậy hai vectơ AB và CD cùng phương.

c) Với A(1; 2), B(3; 4), C(‒1; ‒2) và E(a; 1) ta có: AC=2;4 và BE=a3;3

Hai vectơ AC và BE cùng phương khi và chỉ khi a32=34 

 (‒ 4).(a – 3) = (‒3). (‒2)

 ‒ 4a + 12 = 6

 4a = 6

a=32.

Vậy a=32 thì hai vectơ AC và BE cùng phương.

d) Với a=32E32;1

Với A(1; 2) và E32;1 AE=12;1 

Ta có: AB=2;2 và AC=2;4

Tồn tại hai số thực m và n thỏa mãn: AE=mAB+nAC

12=m.2+n.21=m.2+n.42m2n=122m4n=1m=1n=34

AE=AB+34AC

Vậy AE=AB+34AC.

Bài 4.37 trang 72 Toán 10 Tập 1: Cho vectơ a0. Chứng minh rằng 1aa (hay còn được viết là aa) là một vectơ đơn vị, cùng hướng với vectơ a.

Lời giải

Ta thấy 1a>0a0 nên 1aa là vectơ cùng hướng với vectơ a.

Độ dài của vectơ 1aa là: 1aa=1a.a=1a.a=1

Vậy vectơ 1aa (hay còn được viết là aa) là một vectơ đơn vị, cùng hướng với vectơ a.

Bài 4.38 trang 72 Toán 10 Tập 1: Cho ba vectơ a,b,u với a=b=1 và ab. Xét một hệ trục Oxy với các vectơ đơn vị i=a,j=b. Chứng minh rằng:

a) Vectơ u có tọa độ là u.a;u.b.  

b) u=u.a.a+u.b.b.

Lời giải

Cho ba vectơ a, vecto b, vecto u với | vecto a| = | vecto v| = 1 và vecto a vuông góc vecto b .  (ảnh 1)

Giải Toán 10 Bài tập cuối chương 4  - Kết nối tri thức (ảnh 1)

Bài 4.39 trang 72 Toán 10 Tập 1: Trên sông, một ca nô chuyển động thẳng đều theo hướng S15°E (xem chú thích ở Bài 3.8, trang 42) với vận tốc có độ lớn bằng 20km/h. Tính vận tốc riêng của ca nô, biết rằng nước trên sông chảy về hướng đông với vận tốc có độ lớn bằng 3 km/h.

Lời giải

Trên sông, một ca nô chuyển động thẳng đều theo hướng S15°E (ảnh 1)

Ta mô tả bài toán bằng hình vẽ trên, trong đó:

OE là hướng đông, OS là hướng nam, OW là hướng tây, ON là hướng bắc;

OA biểu diễn vectơ vận tốc của dòng nước vn và OA=vn=3;

OB là hướng S15°E biểu diễn vectơ vận tốc chuyển động của ca nô vcano tạo với OS một góc 15° và OB=vcano=20;

Lấy điểm C sao cho OABC là hình bình hành. Khi đó OC biểu diễn vectơ vận tốc riêng vr của ca nô.

Vì OB tạo với OS một góc 15° nên OB tạo với OA một góc là 90° ‒ 15° = 75° tức là AOB^=75° 

Xét tam giác OAB có: AB2 = OA2 + OB2 – 2.OA.OB.cosAOB^ 

 AB2 = 32 + 202 – 2.3.20.cos75°

 AB ≈ 19,44

Vì OABC là hình bình hành nên OC = AB ≈ 19,44 (tính chất hình bình hành)

Suy ra vr=OC=OC19,44 (km/h)

Vậy vận tốc riêng của ca nô khoảng 19,44 km/h.

Bài viết liên quan

611 lượt xem