Giải Toán 10 Kết nối tri thức Bài 12: Số gần đúng và sai số
Hamchoi.vn trân trọng giới thiệu: lời giải bài tập Toán lớp 10 Bài 12: Số gần đúng và sai số sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 12. Mời các bạn đón xem:
Giải bài tập Toán 10 Bài 12: Số gần đúng và sai số
Mở đầu
8 848 m; 8 848,13m; 8 844,43m; 8 850m; …
Lời giải:
Khi đo độ cao đỉnh núi Everest người ta không thể đo trực tiếp một cách chính xác mà phải thông qua tính toán.
Mỗi vị trí quan sát hoặc trong tính toán, có những con số không thể lấy chính xác đo đó kết quả thu được cũng không giống nhau.
Ngoài ra có thể người ta đã làm tròn kết quả để được một con số gọn mà chính xác nhất có thể, nên các kết quả cũng khác nhau.
Qua nhiều lần đo, người ta đưa ra được chiều cao của đỉnh Everest là 8 848,86 m.
1. Số gần đúng
Trong các số được đưa ra ở tình huống mở đầu, số nào gần với số được công bố ở trên?
Lời giải:
Ta có:
|8 848,86 – 8 848| = 0,86;
|8 848,86 – 8 848,13| = 0,73;
|8 848,86 – 8 844,43| = 4,43;
|8 848,86 – 8 850| = 1,14.
Trong các số 0,86; 0,73; 4,43; 1,14 thì số 0,73 là số nhỏ nhất.
Do đó trong các số 8 848 m; 8 848,13 m; 8 844,43 m; 8 850 m thì số 8 848,13 m là số gần nhất với số được công bố ngày 8–12–2020.
Lời giải
Giả sử ống đong nước thứ nhất là Trang đo và ống đong nước thứ hai là Hòa đo.
Khi đó ống thứ nhất đo được là 13 cm3, ống thứ hai là 13,1 cm3.
Câu hỏi trang 74 Toán 10 Tập 1: Hãy lấy một ví dụ khác về số gần đúng.
Lời giải:
Ta không thể biết chính xác giá trị của .
Ta có: .
Do đó số gần đúng của là 2,236.
Lời giải:
Chu vi đường tròn bán kính 1 cm là:
P = 2π.1 = 2π (cm)
Bấm máy tính ta thấy 2π ≈ 6,283.
Vậy giá trị gần đúng của P là 6,283 cm.
2. Sai số tuyệt đối và sai số tương đối
Lời giải:
Quan sát hình vẽ trên, ta thấy số 13,1 gần hơn số 13.
Do đó 13,1 cm3 gần với thể tích của cốc nước hơn.
Lời giải:
Gọi là đường kính thực của nhân tế bào.
Vì phép đo đường kính nhân tế bào cho kết quả là 5 ± 3 μm.
Suy ra: a = 5 μm; d = 0,3 μm.
Tuy không biết nhưng ta xem đường kính của nhân tế bào là 5 μm nên 5 là số gần đúng cho . Độ chính xác là 0,3 μm.
Do đó, giá trị của nằm trong đoạn: [5 – 0,3; 5 + 0,3] hay [4,7;5,3] μm.
Khẳng định “Dây chuyền A tốt hơn dây chuyền B” là đúng hay sai?
Lời giải:
Công ty sử dụng dây chuyền A đóng bao gạo với khối lượng mỗi bao là 5 kg và sai số tuyệt đối là 0,2 kg.
Công ty sử dụng dây chuyền B đóng bao gạo với khối lượng mỗi bao là 20 kg và sai số tuyệt đối là 0,5 kg.
Mặc dù độ chính xác của khối lượng bao gạo đóng bằng dây chuyền A nhỏ hơn nhưng do bao gạo đóng bằng dây chuyền B nặng hơn nhiều nên ta không dựa vào sai số tuyệt đối để so sánh.
Do đó câu hỏi này ta chưa thể trả lời chính xác được nếu chỉ dựa vào các kiến thức đã học trước đó.
Lời giải:
Xét dây chuyền A, ta có: a = 5 và d = 0,2.
Khi đó, sai số tương đối của dây chuyền A là:
Đối với dây chuyền B, ta có: a = 20 và d = 0,5.
Khi đó, sai số tương đối của dây chuyền B là:
Ta thấy 2,5% < 4% nên chất lượng của dây chuyền B tốt hơn.
Vậy chất lượng của dây chuyền B tốt hơn.
3. Quy tròn số gần đúng
Luyện tập 4 trang 77 Toán 10 Tập 1: Hãy viết số quy tròn của số gần đúng trong những trường hợp sau:
Lời giải:
a) Vì độ chính xác đến hàng trăm (d = 300) nên hàng làm tròn là hàng nghìn. Chữ số hàng nghìn của số 11 251 900 là 1.
Ta thấy bên phải chữ số hàng nghìn 1 là chữ số 9 > 5 nên ta tăng chữ số hàng nghìn thêm 1 đơn vị là 2 đồng thời các chữ số từ hàng trăm trở đi thay bằng các chữ số 0.
Vậy số quy tròn của 11 251 900 là 11 252 000
b) Vì độ chính xác đến hàng phần trăm (d = 0,01) nên hàng làm tròn là hàng phần mười. Chữ số hàng phần mười của số 18,2857 là 2.
Vì số bên phải chữ số 2 là chữ số 8 > 5 nên ta tăng chữ số hàng phần mười thêm 1 đơn vị là 3 đồng thời bỏ đi các số từ hàng phần trăm trở đi.
Vậy số quy tròn của 18,2857 là 18,3.
Vận dụng trang 77 Toán 10 Tập 1: Các nhà vật lí sử dụng hai phương pháp khác nhau để đo tuổi của vũ trụ (đơn vị tỉ năm) lần lượt cho hai kết quả 13,807 ± 0,026 và 13,799 ± 0,021.
Lời giải:
Xét phương pháp 1, ta có: a = 13,807 và d = 0,026.
Khi đó, sai số tương đối của phương pháp 1 là:
Xét phương pháp 2, ta có: a = 13,799 và d = 0,021.
Khi đó, sai số tương đối của phương pháp 2 là:
Vì 0,15% < 0,19% nên phương pháp 2 cho kết quả chính xác hơn.
Vậy phương pháp 2 cho kết quả chính xác hơn.
Bài tập
Bài 5.1 trang 77 Toán 10 Tập 1: Trong các số sau, những số nào là số gần đúng?
a) Cân một túi gạo cho kết quả là 10,2 kg.
b) Bán kính Trái Đất là 6 371 km.
c) Trái Đất quay một vòng quanh Mặt Trời mất 365 ngày.
Lời giải:
a) Mỗi loại cân có độ chia khác nhau nên khi đo hiển nhiên sẽ có sai số và ta không thể cân chính xác được khối lượng của túi gạo.
Vậy khối lượng túi gạo là 10,2 kg là số gần đúng.
b) Vì bề mặt Trái Đất không bằng phẳng nên không thể xác định được chính xác tâm của Trái Đất.
Do đó không thể xác định được chính xác bán kính của Trái Đất.
Vậy bán kính Trái Đất là 6 371 km là số gần đúng.
c) Trái Đất quay một vòng quanh Mặt Trời mất 365 ngày, 5 giờ, 59 phút và 16 giây.
Vậy Trái Đất quay một vòng quanh Mặt Trời mất 365 ngày là số gần đúng.
Lời giải:
“Đo độ cao của một ngọn núi cho kết quả là 1 235 ± 5 m” tức là độ cao gần đúng của ngọn núi là a = 1 235m và độ chính xác là d = 5.
Do đó độ cao của một ngọn núi nằm trong khoảng [1 235 – 5; 1 235 + 5] hay [1 230; 1 240].
Làm tròn số gần đúng a = 1 235.
Vì độ chính xác đến hàng đơn vị (d = 5) nên ta làm tròn a đến hàng chục theo quy tắc làm tròn. Số quy tròn của a là 1 240.
Lời giải:
Sử dụng máy tính cầm tay, ta có:
Độ chính xác d = 0,0005 nên ta có hàng làm tròn là hàng phần nghìn.
Chữ số ở hàng phần nghìn là số 2, chữ số bên phải là chữ số 9 > 5 nên ta tăng chữ số hàng phần nghìn thêm 1 đơn vị là 3 đồng thời bỏ các chữ số từ hàng phần chục nghìn trở đi.
Do đó, số quy tròn của 1,912931183 là 1,913.
Vậy số gần đúng của với độ chính xác 0,0005 là 1,913.
Phương pháp nào chính xác nhất tính theo sai số tương đối?
Lời giải:
∙ Phương pháp 1: 67,31 ± 0,96.
Ta có: a = 67,31 và d = 0,96.
Khi đó, sai số tương đối của phương pháp 1 là:
Phương pháp 2: 67,90 ± 0,55.
Ta có: a = 67,90 và d = 0,55.
Khi đó, sai số tương đối của phương pháp 2 là:
Phương pháp 3: 67,74 ± 0,46.
Ta có: a = 67,74 và d = 0,46.
Khi đó, sai số tương đối của phương pháp 3 là:
Vì 0,68 < 0,81 < 1,43 nên sai số tương đối của phương pháp 3 là nhỏ nhất. Do đó phương pháp 3 cho kết quả chính xác nhất.
Vậy phương pháp 3 cho kết quả chính xác nhất theo sai số tương đối.
Kết quả của An: S1 = 2πR ≈ 2 . 3,14 . 2 = 12,56 cm;
Kết quả của Bình: S2 = 2πR ≈ 2 . 3,1 . 2 = 12,4 cm.
Hỏi:
a) Hai giá trị tính được có phải là các số gần đúng không?
b) Giá trị nào chính xác hơn?
Lời giải
a) Vì công thức chu vi đường tròn là 2πR với R là độ dài bán kính, trong đó π là số không thể tính chính xác được mà chỉ có thể lấy số gần đúng nên hai giá trị tính được là số gần đúng.
Vậy giá trị tính được của An và Bình là các số gần đúng.
b) Kết quả của An: S1 = 2πR ≈ 2 . 3,14 . 2 = 12,56 (cm);
Kết quả của Bình: S2 = 2πR ≈ 2 . 3,1 . 2 = 12,4 (cm).
Ta thấy 3,14 > 3,1 hay S1 > S2.
Do đó |2πR − S1| < |2πR − S2|.
Vậy giá trị của An chính xác hơn.
Lời giải:
* Làm tròn số 8 316,4 đến hàng chục:
Chữ số hàng chục của số 8 316,4 là 1, chữ số bên phải chữ số 1 là 6.
Mà 6 > 5 nên ta tăng chữ số hàng chục thêm 1 đơn vị là 2 đồng thời đổi chữ số hàng đơn vị là chữ số 0.
Khi đó, làm tròn số 8 316,4 đến hàng chục là 8 320.
Do đó số quy tròn là: 8 320.
Sai số tuyệt đối: |8320 − 8316,4| = 3,6.
* Làm tròn số 9,754 đến hàng phần trăm:
Chữ số hàng phần trăm của số 9,754 là 5, chữ số bên phải chữ số 5 là 4.
Mà 4 < 5 nên ta giữ nguyên chữ số hàng phần trăm là 5 và bỏ đi chữ số bên phải.
Khi đó, làm tròn số 9,754 đến hàng phần trăm là 9,75.
Do đó số quy tròn là: 9,75.
Sai số tuyệt đối: |9,754 − 9,75| = 0,004.