IMG-LOGO

Câu hỏi:

19/07/2024 32

Cho đường thẳng d: y = –4x + 3.

a) Vẽ đồ thị hàm số.

b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.

c) Tính khoảng cách từ gốc tọa độ đến d.

d) Tính diện tích tam giác OAB.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

a) Bảng giá trị:

x

0

1

2

y

3

–1

–5

Đồ thị:

Cho đường thẳng d: y = -4x + 3. a) Vẽ đồ thị hàm số. b) Tìm tọa độ (ảnh 1)

b) Trục Ox: y = 0.

Với y = 0, ta có: \[ - 4x + 3 = 0 \Leftrightarrow x = \frac{3}{4}\].

Suy ra tọa độ \(A\left( {\frac{3}{4};0} \right)\).

Trục Oy: x = 0.

Với x = 0, ta có: y = –4.0 + 3 = 3.

Suy ra tọa độ B(0; 3).

Vậy \(A\left( {\frac{3}{4};0} \right)\), B(0; 3) thỏa mãn yêu cầu bài toán.

c) Gọi H là chân đường vuông góc kẻ từ O đến đường thẳng d.

Ta có \(OA = \frac{3}{4},\,\,OB = 3\).

Tam giác OAB vuông tại O có OH là đường cao:

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} = \frac{1}{{{{\left( {\frac{3}{4}} \right)}^2}}} + \frac{1}{{{3^2}}} = \frac{{17}}{9}\).

Suy ra \(O{H^2} = \frac{9}{{17}}\).

Do đó \(OH = \frac{3}{{\sqrt {17} }}\).

Vậy khoảng cách từ gốc tọa độ đến d bằng \(\frac{3}{{\sqrt {17} }}\).

d) Ta có \({S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.\frac{3}{4}.3 = \frac{9}{8}\).

Vậy diện tích tam giác OAB là \(\frac{9}{8}\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với a, b, c là các số thực không âm thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của P = a + 2b2 + 3c3.

Xem đáp án » 29/03/2024 75

Câu 2:

Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 29/03/2024 71

Câu 3:

Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.

Xem đáp án » 29/03/2024 66

Câu 4:

Hỏi phương trình 3x2 – 6x + ln(x + 1)3 + 1 = 0 có bao nhiêu nghiệm phân biệt?

Xem đáp án » 29/03/2024 66

Câu 5:

Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).

Xem đáp án » 29/03/2024 62

Câu 6:

Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.

Xem đáp án » 29/03/2024 58

Câu 7:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.

Xem đáp án » 29/03/2024 54

Câu 8:

Vẽ \[\widehat {xOy} = 50^\circ \]. Lấy điểm M thuộc Ox sao cho OM = 6 cm. Vẽ đường thẳng d là trung trực của đoạn thẳng OM.

Xem đáp án » 29/03/2024 42

Câu 9:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được số mới gấp 25 lần số cũ.

Khi đó, tìm số thập phân biểu diễn phân số \(\frac{x}{{100}}\).

Xem đáp án » 29/03/2024 40

Câu 10:

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).

Xem đáp án » 29/03/2024 39

Câu 11:

Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.

Xem đáp án » 29/03/2024 39

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \)\(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 29/03/2024 38

Câu 13:

Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.

Xem đáp án » 29/03/2024 38

Câu 14:

Cho hàm số \(y = f\left( x \right) = \frac{{12}}{x}\).

a) Tính f(5) và f(–3).

b) Hãy điền giá trị tương ứng của hàm số vào bảng sau:

x

6

4

3

2

5

8

12

\(f\left( x \right) = \frac{{12}}{x}\)

?

?

?

?

?

?

?

Xem đáp án » 29/03/2024 37

Câu 15:

Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem đáp án » 29/03/2024 37

Câu hỏi mới nhất

Xem thêm »
Xem thêm »