IMG-LOGO

Câu hỏi:

19/07/2024 29

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \(AM = \frac{{AC}}{4}\). Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).


A. –4.



B. 0.


Đáp án chính xác


C. 4.



D. 16.


 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho (ảnh 1)

Ta phân tích các vectơ \(\overrightarrow {MB} ,\,\,\overrightarrow {MN} \) theo các vectơ có giá vuông góc với nhau.

\(\overrightarrow {MB} = \overrightarrow {AB} - \overrightarrow {AM} = \overrightarrow {AB} - \frac{1}{4}\overrightarrow {AC} = \overrightarrow {AB} - \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{3}{4}\overrightarrow {AB} - \frac{1}{4}\overrightarrow {AD} \).

\(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \overrightarrow {AD} + \overrightarrow {DN} - \frac{1}{4}\overrightarrow {AC} = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {DC} - \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\).

\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{3}{4}\overrightarrow {AD} + \frac{1}{4}\overrightarrow {AB} \).

Khi đó \(\overrightarrow {MB} .\overrightarrow {MN} = \frac{1}{4}\left( {3\overrightarrow {AB} - \overrightarrow {AD} } \right)\left( {\overrightarrow {AB} + 3\overrightarrow {AD} } \right) = \frac{1}{4}\left( {3A{B^2} + 8\overrightarrow {AB} .\overrightarrow {AD} - 3A{D^2}} \right)\)

\( = \frac{1}{4}\left( {{{3.2}^2} + 8.0 - {{3.2}^2}} \right) = 0\).

Vậy ta chọn phương án B.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với a, b, c là các số thực không âm thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của P = a + 2b2 + 3c3.

Xem đáp án » 29/03/2024 75

Câu 2:

Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 29/03/2024 71

Câu 3:

Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.

Xem đáp án » 29/03/2024 67

Câu 4:

Hỏi phương trình 3x2 – 6x + ln(x + 1)3 + 1 = 0 có bao nhiêu nghiệm phân biệt?

Xem đáp án » 29/03/2024 66

Câu 5:

Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).

Xem đáp án » 29/03/2024 62

Câu 6:

Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.

Xem đáp án » 29/03/2024 58

Câu 7:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.

Xem đáp án » 29/03/2024 54

Câu 8:

Vẽ \[\widehat {xOy} = 50^\circ \]. Lấy điểm M thuộc Ox sao cho OM = 6 cm. Vẽ đường thẳng d là trung trực của đoạn thẳng OM.

Xem đáp án » 29/03/2024 43

Câu 9:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được số mới gấp 25 lần số cũ.

Khi đó, tìm số thập phân biểu diễn phân số \(\frac{x}{{100}}\).

Xem đáp án » 29/03/2024 40

Câu 10:

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).

Xem đáp án » 29/03/2024 40

Câu 11:

Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.

Xem đáp án » 29/03/2024 39

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \)\(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 29/03/2024 38

Câu 13:

Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.

Xem đáp án » 29/03/2024 38

Câu 14:

Cho hàm số \(y = f\left( x \right) = \frac{{12}}{x}\).

a) Tính f(5) và f(–3).

b) Hãy điền giá trị tương ứng của hàm số vào bảng sau:

x

6

4

3

2

5

8

12

\(f\left( x \right) = \frac{{12}}{x}\)

?

?

?

?

?

?

?

Xem đáp án » 29/03/2024 37

Câu 15:

Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem đáp án » 29/03/2024 37

Câu hỏi mới nhất

Xem thêm »
Xem thêm »