Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.
a) Chứng minh tứ giác ABHM nội tiếp.
b) Chứng minh OA.OB = OH.OM = R2.
c) Chứng minh tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.
d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.
a) Do ME, MF là hai tiếp tuyến của (O) nên ME = MF.
Khi đó M thuộc đường trung trực của đoạn EF (1)
Lại có OE = OF = R.
Suy ra O thuộc đường trung trực của đoạn EF (2)
Từ (1), (2), suy ra OM là đường trung trực của đoạn EF.
Do đó OM ⊥ EF.
Ta có \[\widehat {MHB} + \widehat {MAB} = 90^\circ + 90^\circ = 180^\circ \].
Vậy tứ giác ABHM nội tiếp đường tròn đường kính MB.
b) Xét ∆OHB và ∆OAM, có:
\(\widehat {HOB}\) chung;
\(\widehat {OHB} = \widehat {OAM} = 90^\circ \).
Do đó (g.g).
Suy ra \(\frac{{OH}}{{OA}} = \frac{{OB}}{{OM}}\).
Vì vậy OH.OM = OA.OB (3)
Tam giác OEM vuông tại E có EH là đường cao:
OE2 = OH.OM (Hệ thức lượng trong tam giác vuông).
⇔ R2 = OH.OM (4)
Từ (3), (4), ta thu được OA.OB = OH.OM = R2.
c) Gọi I là giao điểm của OM với đường tròn (O).
Ta có \(\widehat {MFI} = \widehat {FEI}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung FI) (5)
Do EF ⊥ OM nên .
Suy ra \(\widehat {FEI} = \widehat {EFI}\) (hai góc nội tiếp chắn hai cung bằng nhau) (6)
Từ (5), (6), suy ra \(\widehat {MFI} = \widehat {EFI}\).
Do đó FI là tia phân giác của \(\widehat {MFE}\).
Tam giác MEF cân tại M có MH là đường trung trực.
Suy ra MH cũng là đường phân giác của tam giác MEF.
Ta có I là giao điểm của hai đường phân giác FI, MH của tam giác MEF.
Khi đó I là tâm của đường tròn nội tiếp tam giác MEF.
Mà I thuộc đường tròn (O) cố định.
Vậy ta có điều phải chứng minh.
d) Ta có \({S_{\Delta HBO}} = \frac{1}{2}OH.HB\).
Ta có (chứng minh trên).
Suy ra \(\frac{{HB}}{{AM}} = \frac{{OB}}{{OM}}\).
Do đó HB.OM = AM.OB (7)
Lại có OH.OM = R2 (kết quả câu b) (8)
Nhân (7) và (8) vế theo vế, ta được: \(OH.HB.O{M^2} = {R^2}.AM.OB = {R^2}.AM.\frac{{{R^2}}}{{OA}}\).
\( \Rightarrow OH.HB = AM.\frac{{{R^4}}}{{OA.O{M^2}}} = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}}\).
Áp dụng bất đẳng thức Cauchy, ta được: OA2 + AM2 ≥ 2OA.AM.
Khi đó ta có \(OH.HB = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}} \le {R^4}.\frac{{AM}}{{OA.2.OA.AM}} = \frac{{{R^4}}}{{2O{A^2}}}\).
Suy ra \({S_{\Delta HBO}} \le \frac{{{R^4}}}{{4O{A^2}}}\).
Dấu “=” xảy ra ⇔ OA = AM.
Vì vậy diện tích tam giác HBO lớn nhất bằng \(\frac{{{R^4}}}{{4O{A^2}}}\) khi và chỉ khi OA = OM.
Vậy M là điểm nằm trên đường thẳng d sao cho OA = OM thì diện tích tam giác HBO lớn nhất.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).
Với a, b, c là các số thực không âm thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của P = a + 2b2 + 3c3.
Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.
Hỏi phương trình 3x2 – 6x + ln(x + 1)3 + 1 = 0 có bao nhiêu nghiệm phân biệt?
Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).
Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.
Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.
Vẽ \[\widehat {xOy} = 50^\circ \]. Lấy điểm M thuộc Ox sao cho OM = 6 cm. Vẽ đường thẳng d là trung trực của đoạn thẳng OM.
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được số mới gấp 25 lần số cũ.
Khi đó, tìm số thập phân biểu diễn phân số \(\frac{x}{{100}}\).
Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).
Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.
Cho hàm số \(y = f\left( x \right) = \frac{{12}}{x}\).
a) Tính f(5) và f(–3).
b) Hãy điền giá trị tương ứng của hàm số vào bảng sau:
x |
6 |
4 |
3 |
2 |
5 |
8 |
12 |
\(f\left( x \right) = \frac{{12}}{x}\) |
? |
? |
? |
? |
? |
? |
? |