Xét sự đồng biến, nghịch biến của các hàm số:
a) y = 3x2 − 8x3
b) y = 16x + 2x2 − 16x3/3 − x4
c) y = x3 − 6x2 + 9x
d) y = x4 + 8x2 + 5
a) TXĐ: R
y′ = 6x − 24x2 = 6x(1 − 4x)
y' = 0 ⇔
y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)
y' < 0 trên các khoảng (-∞; 0 ); (14; +∞), suy ra y nghịch biến trên các khoảng (-∞;0 ); (14;+∞)
b) TXĐ: R
y′ = 16 + 4x − 16x2 − 4x3 = −4(x + 4)(x2 − 1)
y' = 0 ⇔
Bảng biến thiên:
Vậy hàm số y đã cho đồng biến trên các khoảng (-∞; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; +∞)
c) TXĐ: R
y′ = 3x2 − 12x + 9
y' = 0
y' > 0 trên các khoảng (-∞; 1), (3; +∞) nên y đồng biến trên các khoảng (-∞; 1), (3; +∞)
y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)
d) TXĐ: D = R
y′ = 4x3 + 16x = 4x(x2 + 4)
y' = 0 ⇔ x = 0
y' > 0 trên khoảng (0; +∞) ⇒ y đồng biến trên khoảng (0; +∞)
y' < 0 trên khoảng (-∞; 0) ⇒ y nghịch biến trên khoảng (-∞; 0)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xác định giá trị của b để hàm số f(x) = sinx – bx + c nghịch biến trên toàn trục số.
Xét sự đồng biến, nghịch biến của các hàm số:
a) y = x − sinx, x ∈ [0; 2π].
c) y = sin(1/x), (x > 0)
Chứng minh các bất đẳng thức sau:
a) tanx > sinx, 0 < x < π/2
b)
với 0 < x < +∞
Chứng minh các phương trình sau có nghiệm duy nhất
3(cosx − 1) + 2sinx + 6x = 0
Xác định tham số m để hàm số sau:
a) đồng biến trên từng khoảng xác định;
b) y = −x3 + mx2 − 3x + 4 nghịch biến trên.
Tìm giá trị của tham số m để các hàm số y = x3 - 2mx2 + 12x - 7 đồng biến trên R.
Tìm giá trị của tham số m để hàm số y nghịch biến trên từng khoảng xác định