Từ các chữ số: 1; 2; 3; 4; 5; 6. a) Có thể lập được bao nhiêu số có ba chữ số khác nhau
Giải Toán 10 Kết nối tri thức Bài tập cuối chương 8
Bài 8.23 trang 76 Toán 10 Tập 2: Từ các chữ số: 1; 2; 3; 4; 5; 6.
a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?
b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3 ?
Lời giải
a) Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.
Vậy số các số có ba chữ số khác nhau lập từ sáu chữ số đã cho là = 120 số.
b) Một số chia hết cho 3 khi và chỉ khi tổng các chữ số của nó phải chia hết cho 3.
Các bộ ba chữ số có tổng chia hết cho 3 trong các chữ số đã cho là:
(1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).
Ứng với mỗi bộ trên, ta lập được 3! = 6 số.
Có 8 bộ ba chữ số, do đó số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là: 8 . 6 = 48 (số).
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài viết liên quan
- Hệ số của x^4 trong khai triển nhị thức (3x – 4)^5 là A. 1 620. B. 60 C. – 60. D. – 1 620
- a) Có bao nhiêu cách viết một dãy 5 chữ cái in hoa từ bảng chữ cái tiếng Anh gồm 26 chữ cái
- Tế bào A có 2n = 8 nhiễm sắc thể (NST), và nguyên phân 5 lần liên tiếp. Tế bào B có 2n = 14 NST và nguyên phân 4 lần
- Lớp 10B có 40 học sinh gồm 25 nam và 15 nữ. Hỏi có bao nhiêu cách chọn 3 bạn tham gia vào đội thiện nguyện
- Trong khai triển nhị thức Newton của (2x + 3)^5, hệ số của x^4 hay hệ số của x^3 lớn hơn