Xác định giá trị của tham số m để hàm số y = x3 – 2x2 + mx + 1 đạt cực tiểu tại x = 1. (Đề thi tốt nghiệp THPT năm 2011)
TXĐ: D = R
y’ = 3x2 – 4x + m; y’ = 0 ⇔ 3x2 – 4x + m = 0
Phương trình trên có hai nghiệm phân biệt khi:
∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)
Hàm số có cực trị tại x = 1 thì :
y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )
Mặt khác, vì:
y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0
cho nên tại x = 1, hàm số đạt cực tiểu.
Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xác định giá trị của tham số m để hàm số sau không có cực trị
y =
Tìm cực trị của các hàm số sau:
a) y = −2x2 + 7x − 5
b) y = x3 − 3x2 − 24x + 7
c) y = (x + 2)2.(x − 3)3
Xác định giá trị của tham số m để hàm số sau có cực trị:
y = x3 + 2mx2 + mx − 1
Xác định m để hàm số: y = x3 − mx2 + (m – 2/3)x + 5 có cực trị tại x = 1. Khi đó, hàm số đạt cực tiểu hay đạt cực đại? Tính cực trị tương ứng.
Tìm cực trị của các hàm số sau:
a) y = sin2x
b) y = cosx − sinx
c) y = sin2x
Xác định giá trị của tham số m để hàm số y = x3 - 3x2 + mx - 5 có cực trị:
Cho hàm số:
Khoảng cách d giữa hai điểm cực trị của đồ thị hàm số là:
Xác định giá trị của tham số m để hàm số sau có cực trị
y = x3 - 3(m - 1)x2 - 3(m + 3)x - 5
Chứng minh rằng hàm số:
Không có đạo hàm tại x = 0 nhưng đạt cực đại tại điểm đó.