IMG-LOGO
Trang chủ Lớp 10 Vật lý Bài tập Vật Lí 10: Định luật bảo toàn (có lời giải chi tiết)

Bài tập Vật Lí 10: Định luật bảo toàn (có lời giải chi tiết)

ĐỘNG NĂNG

  • 1272 lượt thi

  • 11 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 3:

Cho một vật có khối lượng 500g đang chuyển động với vận tốc ban đầu là 18km/h. Tác dụng của một lực F thì vật đạt vận tốc 36 km/h . Tìm công của lực tác dụng. Lấy g = 10m/s2

Xem đáp án

Ta có m = 0,5kg; 

v1=18km/h=5m/s;v2=36km/h=10m/s

Wd1=12.m.v12=12.0,5.52=16,25J;Wd2=12.m.v22=12.0,5.102=25J

Áp dụng định lý động năng

A=Wd2Wd1=2516,25=8,75(J)


Câu 4:

Hai xe goong chở than có m2 = 3m1, cùng chuyển động trên 2 tuyến đường ray song song nhau với Wđ1 = Wđ2. Nếu xe một giảm vận tốc đi 3m/s thì Wđ1 = Wđ2. Tìm vận tốc v1, v2.

Xem đáp án

Theo bài ra ta có Wđ1 = 1/7Wđ2

12m1v12=17.12m2v22v2=1,53v1

 

Mặt khác nếu xe 1 giảm vận tốc đi 3m/s thì Wđ1 = Wđ2

m1(v13)22=m2v222=3m1(1,53v1)22

=> v1 = 0,82 m/s => v2 = 1,25m/s hoặc v1=  - 1,82 m/s ( loại )


Câu 5:

Từ tầng dưới cùng của tòa nhà, một thang máy có khối lượng tổng cộng m = 1 tấn, đi lên tầng cao.

a. Trên đoạn đường s1 = 5m đầu tiên, thang máy chuyển động nhanh dần và đạt vận tốc 5m/s. Tính công do động cơ thang máy thực hiện trên đoạn đường này.

b. Trên đoạn đường s2 = 10m tiếp theo, thang máy chuyển động thẳng đều. Tính công suất của động cơ trên đoạn đường này.

c. Trên đoạn đường s3 = 5m sau cùng, thang máy chuyển động chậm dần và dừng lại. Tính công của động cơ và lực trung bình do động cơ tác dụng lên thang máy trên đoạn đừng này. Lấy g = 10m/s2.

Xem đáp án

a, Ngoại lực tác dụng lên thang máy là trọng lực  và kéo  của động cơ thang máy. Áp dụng định lý về động năng ta có: Wđ1 – Wđ0AF1+AP1

Mà Wđ1 =m.v122, Wđ0 =m.v022=0 ;  

AP1=P.s1=m.g.s1(AP1<0)

Vì thang máy đi lên

AF1=m.v122+m.g.s1=12.1000.52+1000.10.5=62500J

b, Vì thang máy chuyển động đều, lực kéo của động cơ cân bằng với trọng lực P:F2+P=0. Công phát động của động cơ có độ lớn bằng công cản AF2=AP với AP=P.s2=m.g.s2

=> AF2 = mgs2 do đó công suất của động cơ thang máy trên đoạn đường s2 là: 

2=AF2t=m.g.s2t=m.g.v2=m.g.v12=1000.10.5=50000(W)=50(kW).

c, Ngoại lực tác dụng lên thang máy là trọng lực P và lực kéo F3 của động cơ.

Áp dụng định lí động năng ta có: Wđ3 – Wđ2 = AF3 + Ap’

Mà Wđ3 = m.v322=0; Wđ2 =mv222 (v2 = v1 = 5m/s);  Ap = - Ps3 = - mgs3

Công của động cơ trên đoạn đường s3 là: AF3 = mgs3mv222  = 37500J

Áp dụng công thức tính công ta tìm được lực trung bình do động cơ tác dụng lên thang máy trên đoạn đường s3F3¯=AF3s3=375005=7500N


Câu 6:

Một vật có khối lượng 2kg trượt qua A với vận tốc 2m/s xuống dốc nghiêng AB dài 2m, cao 1m. Biết hệ số ma sát giữa vật và mặt phẳng nghiêng là µ = 13 . lấy g = 10ms-2.

a. Xác định công của trọng lực, công của lực ma sát thực hiện khi vật chuyển dời từ đỉnh dốc đến chân dốc.

b. Xác định vận tốc của vật tại chân dốc B.

c. Tại chân dốc B vật tiếp tục chuyển động trên mặt phẳng nằm ngang BC dài 2m thì dừng lại. Xác định hệ số ma sát trên đoạn đường BC này.

Xem đáp án

a. Ta có

sinα=12;cosα=32 

Công của trọng lực 

AP=Px.s=Psinα.s=mgsinα.sAP=2.10.12.2=20(J)

 

Công của lực ma sát 

Afms=fms.s=μN.s=μ.mgcosα.sAfms=13.2.10.32.2=20(J)

b. Áp dụng định lý động năng

A=WdBWdAAP+Afms=12mvB212mvA22020=12.2vB212.2.22vB=2(m/s)

c. Áp dụng định lý động năng

A=WdCWdBAfms=12mvC212mvB2

Công của lực ma sát 

Afms=fms.s=μN.s=μ.mg.s/=μ.2.10.2=μ40(J)

Dừng lại

 vC=0(m/s)μ40=012.2.22μ=0,1

 


Câu 7:

Một ô tô có khối lượng 2 tấn đang chuyển động trên đường thẳng nằm ngang AB dài 100m, khi qua A vận tốc ô tô là 10m/s và đến B vận tốc của ô tô là 20m/s. Biết độ lớn của lực kéo là 4000N.

a. Tìm hệ số ma sát µ1 trên đoạn đường AB.

b. Đến B thì động cơ tắt máy và lên dốc BC dài 40m nghiêng 30o so với mặt phẳng ngang. Hệ số ma sát trên mặt dốc là µ2 =153. Hỏi xe có lên đến đỉnh dốc C không?

c. Nếu đến B với vận tốc trên, muốn xe lên dốc và dừng lại tại C thì phải tác dụng lên xe một lực có độ lớn thế nào?

Xem đáp án

a. Áp dụng định lý động năng

A=WdBWdAAF+Afms=12mvB212mvA2

Công của lực kéo AF=F.s=4000.100=4.105(J) 

Công của lực ma sát 

Afms=fms.s=μN.s=μ.m.g.s=μ.2000.10.100=μ.2.106(J)4.105μ.2.106=12.2000.20212.2000.102μ=0,05

b. Giả sử D làvị trí mà vật có vận tốc bằng không

Áp dụng định lý động năng

A=WdDWdBAP+Afms=12mvD212mvB2

Công trọng lực của vật

AP=Px.BD=mgsin300.BD=104.BD(J)

Công của lực ma sát 

Afms=fms.BD=μN.BD=μ.m.gcos300.BD=2000.BD(J)

104.BD2000.BD=12.2000.012.2000.202BD=33,333(m)

BC>BD nên xe không lên được đỉnh dốc.

c. Áp dụng định lý động năng

A=WdCWdBAF+AP+Afms=12mvC212mvB2

Công trọng lực của vật

AP=Px.BC=mgsin300.BC=104.40=4.105(J)

Công của lực ma sát

Afms=fms.BC=μN.BC=μ.m.gcos300.BC=2000.40=8.104(J) 

Công của lực kéo

AF=F.BC=F.40(J)F.404.1058.104=012.2000.202F=2000(N)


Câu 8:

Một xe có khối lượng 2 tấn chuyển động trên đoạn AB nằm ngang với vận tốc không đổi 7,2km/h. Hệ số ma sát giữa xe và mặt đường là μ=0,2 , lấy g = 10m/s2.

a. Tính lực kéo của động cơ.

b. Đến điểm B thì xe tắt máy và xuống dốc BC nghiêng góc 30o so với phương ngang, bỏ qua ma sát. Biết vận tốc tại chân C là 72km/h. Tìm chiều dài dốc BC.

c. Tại C xe tiếp tục chuyển động trên đoạn đường nằm ngang CD và đi thêm được 200m thì dừng lại. Tìm hệ số ma sát trên đoạn CD.

Xem đáp án

a. Vì Xe chuyển động thẳng đều nên 

F=fms=μN=μmg=0,2.2000.10=4000(N)

b. vC=72(km/h)=20(m/s)

Áp dụng định lý động năng

A=WdCWdB 

Công của trọng lực 

AP=Px.BC=Psinα.BC=mgsinα.BCAP=2000.10.12.BC=104.BC(J)

104.BC=12.m.vC212m.vB2104.BC=12.2000.20212.2000.22BC=39,6(m)

c. Áp dụng định lý động năng 

A=WdDWdCAfms=12mvD212mvC2

 

Công của lực ma sát 

Afms=fms.s=μN.s=μ.mg.s/=μ.2000.10.200=μ.4.106(J)

Dừng lại 

vD=0(m/s)μ4.106=012.2000.202μ=0,1

 


Câu 10:

Một ô tô có khối lượng 1 tấn chuyển động trên đường ngang khi qua A có vận tốc 18km/h và đến B cách  A một khoảng là 100m với vận tốc 54km/h.

a. Tính công mà lực kéo của động cơ đã thực hiện trên đoạn đường AB.

b. Đến B tài xế tắt máy và xe tiếp tục xuống dốc nghiêng BC dài 100m, cao 60m. Tính vận tốc tại C.

c. Đến C xe vẫn không nổ máy, tiếp tục leo lên dốc nghiêng CD hợp với mặt phẳng nằm ngang một góc 30o. Tính độ cao cực đại mà xe đạt được trên mặt phẳng nghiêng này. Cho biết hệ số ma sát không thay đổi trong quá trình chuyển động của xe là µ = 0,1, lấy g = 10ms-2.

Xem đáp án

a. Ta có

vA=18(km/h)=5(m/s);vB=54(km/h)=15(m/s) 

Áp dụng định lý động năng 

A=12mvB212mvA2AF+Afms=12m(vB2vA2)

Mà Afms=fms.s=μ.N.s=μ.m.g.s=0,1.1000.10.100=105(J)AF=12.1000(15252)+105=2.105(J)

b. Ta có

 sinα=60100=35;cosα=1002602100=45

Áp dụng định lý động năng

A=WdCWdBAP+Afms=12mvC212mvB2

Công của trọng lực 

AP=Px.BC=Psinα.BC=mgsinα.BCAP=1000.10.35.100=6.105(J)

Công của lực ma sát 

Afms=fms.BC=μN.BC=μ.mgcosα.BCAfms=0,1.1000.10.45.100=8.104(J)

6.1058.104=12.1000.(vC2152)vC=35,57(m/s)

c. Gọi E là vị trí mà xe có thể lên được 

vE=0(m/s)

Áp dụng định lý động năng

A=WdEWdCAP+Afms=12mvC2

Công trọng lực của vật

AP=Px.CE=mgsin300.CEAP=1000.10.12.CE=5000.CE(J)

Công của lực ma sát 

Afms=fms.CE=μN.CE=μ.m.gcos300.CE=5003.CE(J)

5000.CE5003.CE=12.1000.(35,57)2CE=107,8435(m)

 


Câu 11:

Hai hạt có khối lượng m và 2m, có động lượng theo thứ tự là p và p/2 chuyển động theo hai phương vuông góc đến va chạm vào nhau. Sau va chạm hai hạt trao đổi động lượng cho nhau (hạt này có động lượng cũ của hạt kia). Tính nhiệt tỏa ra khi va chạm.

Xem đáp án

Hạt có khối lượng m và động lượng p thì có động năng: 

Wd=12mv2=12.p2m

Hạt có khối lượng 2m và động lượng p/2 thì có động năng: 

Wd=12(p/2)22m=116.p2m

Động năng của hệ trước va chạm

W=916.p2m

Sau va chạm hạt m có động lượng p/2, vậy có động năng

12(p/2)2m=18.p2m

Hạt 2m có động lượng p, vậy có động năng

12p22m=14.p2m12p22m=14p2m

Động năng của hệ sau va chạm:

 W’đ=38.p2m

Q = Wđ –W’đ =316.p2m


Bắt đầu thi ngay