Trong trò chơi “Vòng quay may mắn”, người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng
Giải Toán 10 Kết nối tri thức Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển
Hoạt động 2 trang 84 Toán 10 Tập 2: Trong trò chơi “Vòng quay may mắn”, người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng ở một trong hai vị trí: Loại xe 50 cc và Loại xe 110 cc. Mũi tên ở bánh xe thứ hai có thể dừng ở một trong bốn vị trí: màu đen, màu trắng, màu đỏ và màu xanh. Vị trí của mũi tên trên hai bánh xe sẽ xác định người chơi nhận được loại xe nào, màu gì.
Phép thử T là quay hai bánh xe. Hãy vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
Lời giải
Phép thử T là quay hai bánh xe.
Quay bánh xe thứ nhất có 2 kết quả có thể xảy ra: Loại xe 50 cc và Loại 110 cc.
Ứng với từng kết quả quay của bánh xe thứ nhất có 4 kết quả quay của bánh xe thứ hai: xanh, đỏ, đen, trắng.
Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:
Các kết quả có thể là: Xe 50 cc màu xanh; Xe 50 cc màu đỏ; Xe 50 cc màu đen; Xe 50 cc màu trắng; Xe 110 cc màu xanh; Xe 110 cc màu đỏ; Xe 110 cc màu đen; Xe 110 cc màu trắng.
⇒ Ω = { Xe 50 cc màu xanh; Xe 50 cc màu đỏ; Xe 50 cc màu đen; Xe 50 cc màu trắng; Xe 110 cc màu xanh; Xe 110 cc màu đỏ; Xe 110 cc màu đen; Xe 110 cc màu trắng}.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài viết liên quan
- Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G
- Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên
- Trở lại trò chơi “Vòng quay may mắn” ở HĐ2. Tính xác suất để người chơi nhận được loại xe 110 cc có màu trắng
- Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính
- Cho E là biến cố và omega là không gian mẫu. Tính n(E) theo n(omega) và n(E