Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G

Lời giải Hoạt động 1 trang 83 Toán 10 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
380 lượt xem


Giải Toán 10 Kết nối tri thức Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Hoạt động 1 trang 83 Toán 10 Tập 2Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G: “Bạn An trúng giải nhất” ta cần xác định n(Ω), n(F) và n(G). Liệu có thể tính n(Ω), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của Ω, F và G rồi kiểm đếm được không.

Lời giải

Bằng cách dùng tổ hợp ta tính được n(Ω) = C456 = 8 145 060; n(F) = 1 ; n(G) = 234.

Vậy, nếu sử dụng cách liệt kê, ta vẫn có thể liệt kê hết các phần tử của ba tập hợp F, G và Ω tuy nhiên việc liệt kê sẽ dài và mất rất nhiều thời gian, dễ bị nhầm lẫn đặc biệt là tập hợp Ω có tới 8 145 060 phần tử.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Tình huống mở đầu trang 83 Toán 10 Tập 2: Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, trúng giải nhất của bạn An khi chọn bộ số... 

Hoạt động 1 trang 83 Toán 10 Tập 2: Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G... 

Luyện tập 1 trang 84 Toán 10 Tập 2: Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên... 

Hoạt động 2 trang 84 Toán 10 Tập 2: Trong trò chơi “Vòng quay may mắn”, người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng... 

Luyện tập 2 trang 85 Toán 10 Tập 2: Trở lại trò chơi “Vòng quay may mắn” ở HĐ2. Tính xác suất để người chơi nhận được loại xe 110 cc có màu trắng... 

Luyện tập 3 trang 85 Toán 10 Tập 2: Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính... 

Hoạt động 3 trang 85 Toán 10 Tập 2: Cho E là biến cố và omega là không gian mẫu. Tính n(E) theo n(omega) và n(E... 

Luyện tập 4 trang 86 Toán 10 Tập 2: Có ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3... 

Vận dụng trang 86 Toán 10 Tập 2: Phép thử ở tình huống trên là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45. Không gian mẫu omega là tập hợp tất cả các tập con có sáu phần tử... 

Bài tập 9.6 trang 86 Toán 10 Tập 2: Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau... 

Bài tập 9.7 trang 86 Toán 10 Tập 2: Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau... 

Bài tập 9.8 trang 86 Toán 10 Tập 2: Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi... 

Bài tập 9.9 trang 86 Toán 10 Tập 2: Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối. a) Vẽ sơ đồ hình cây mô tả các phần tử... 

Bài tập 9.10 trang 87 Toán 10 Tập 2: Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn... 

Bài tập 9.11 trang 87 Toán 10 Tập 2: Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm... 

Bài tập 9.12 trang 87 Toán 10 Tập 2: Màu hạt của đậu Hà Lan có hai kiểu hình là màu vàng và màu xanh tương ứng với hai loại gen là gen trội A và gen lặn a... 

Bài viết liên quan

380 lượt xem