Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau

Lời giải Bài 6.13 trang 16 Toán 10 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
303 lượt xem


Giải Toán 10 Kết nối tri thức Bài 16: Hàm số bậc hai

Bài 6.13 trang 16 Toán 10 Tập 2: Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.

a) Tính diện tích mảnh vườn hình chữ nhật được rào theo chiều rộng x (mét) của nó.

b) Tính kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.   

Lời giải

a) Bác Hùng dùng lưới để rào thành một mảnh vườn hình chữ nhật có chiều rộng x (mét).

Do tấm lưới dài 40 m nên chu vi của mảnh vườn hình chữ nhật là 40 m.

Nửa chu vi của mảnh vườn là 40 : 2 = 20 m.

Chiều dài của mảnh vườn rào là: 20 – x (m).

Diện tích mảnh vườn hình chữ nhật là: S(x) = x . (20 – x) = – x2 + 20x  (m2).

Như vậy, diện tích S(x) của mảnh vườn là hàm số của chiều rộng x.

b) Để tìm diện tích lớn nhất của mảnh vườn hình chữ nhật bác Hùng có thể rào được, ta tính giá trị lớn nhất của hàm số S(x).

Hàm số S(x) là hàm số bậc hai với a =  – 1, b = 20, c = 0.

Tọa độ đỉnh của đồ thị hàm số S(x) = – x2 + 20x là I(10; 100).

Vậy hàm số S(x) đạt giá trị lớn nhất là S =100 tại x = 10.

Khi đó chiều dài là 20 – 10 = 10 (m).

Vậy để mảnh vườn rào được có diện tích lớn nhất thì bác Hùng nên rào lưới thép gai thành hình vuông có độ dài cạnh là 10 m hay kích thước của mảnh vườn là 10 m × 10 m.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Mở đầu trang 11 Toán 10 Tập 2:Bác Việt có một tấm lưới hình chữ nhật dài 20 m. Bác muốn dùng tấm lưới này... 

Hoạt động 1 trang 11 Toán 10 Tập 2: Xét bài toán rào vườn ở tình huống mở đầu. Gọi x mét (0 < x < 10) là khoảng cách từ điểm cắm cọc đến bờ tường... 

Câu hỏi trang 12 Toán 10 Tập 2: Hàm số nào dưới đây là hàm số bậc hai? A. y = x4 + 3x2 + 2... 

Luyện tập 1 trang 12 Toán 10 Tập 2: Cho hàm số y = (x – 1)(2 – 3x). a) Hàm số đã cho có phải là hàm số bậc hai không? Nếu có, hãy xác định các hệ số a, b, c... 

Vận dụng 1 trang 12 Toán 10 Tập 2: Một viên bi rơi tự do từ độ cao 19,6 m xuống mặt đất. Độ cao h (mét) so với mặt đất của viên bi trong khi rơi... 

Hoạt động 2 trang 12 Toán 10 Tập 2: Xét hàm số y = S(x) = – 2x2 + 20x (0 < x < 10) a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm... 

Hoạt động 3 trang 13 Toán 10 Tập 2: Tương tự HĐ2, ta có dạng đồ thị của một số hàm số bậc hai sau. Từ các đồ thị hàm số... 

Luyện tập 2 trang 15 Toán 10 Tập 2: Vẽ parabol y = 3x2 – 10x + 7. Từ đó tìm khoảng đồng biến, nghịch biến và giá trị nhỏ nhất của hàm số y = 3x2 – 10x + 7... 

Vận dụng 2 trang 15 Toán 10 Tập 2: Bạn Nam đứng dưới chân cầu vượt ba tầng ở nút giao ngã ba Huế, thuộc thành phố Đà Nẵng để ngắm cầu vượt... 

Bài 6.7 trang 16 Toán 10 Tập 2: Vẽ các đường parabol sau: a) y = x2 – 3x + 2; b) y = – 2x2 + 2x + 3; c) y = x2 + 2x + 1; d) y = – x2 + x – 1... 

Bài 6.8 trang 16 Toán 10 Tập 2: Từ các parabol đã vẽ ở Bài tập 6.7, hãy cho biết khoảng đồng biến và khoảng nghịch biến của mỗi hàm số bậc hai... 

Bài 6.9 trang 16 Toán 10 Tập 2: Xác định parabol y = ax2 + bx + 1, trong mỗi trường hợp sau: a) Đi qua hai điểm A(1; 0) và B... 

Bài 6.10 trang 16 Toán 10 Tập 2: Xác định parabol y = ax2 + bx + c, biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; – 12). Gợi ý: Phương trình parabol... 

Bài 6.11 trang 16 Toán 10 Tập 2: Gọi (P) là đồ thị hàm số bậc hai y = ax2 + bx + c. Hãy xác định dấu của hệ số a và biệt thức đenta, trong mỗi trường hợp sau... 

Bài 6.12 trang 16 Toán 10 Tập 2: Hai bạn An và Bình trao đổi với nhau. An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội... 

Bài 6.13 trang 16 Toán 10 Tập 2: Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau... 

Bài 6.14 trang 16 Toán 10 Tập 2: Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol... 

Bài viết liên quan

303 lượt xem