Cho elip (E) x^2/a^2 + y^2/b^2 = 1: (a > b > 0) a) Tìm các giao điểm A1, A2 của (E) với trục hoành

Lời giải Bài 7.35 trang 59 Toán 10 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
296 lượt xem


Giải Toán 10 Kết nối tri thức Bài tập cuối chương 7

Bài 7.35 trang 59 Toán 10 Tập 2:

Cho elip (E) : x2a2+y2b2=1(a > b > 0)

a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2; B1B2

b) Xét một điểm bất kì M(x0; y0) thuộc (E).

Chứng minh rằng: b2  ≤ x02+y02 ≤  a2 và b ≤ OM ≤ a

Chú ý: A1A2; B1B2 tương ứng được là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b              

Lời giải 

a) Giao điểm của (E) với trục hoành có y = 0 nên x2a2+02b2=1  x2  = a2  x = ± a

Do đó, giao điểm của (E) với trục hoành lần lượt là: A1(−a; 0),  A2(a; 0).

 A1A22a;0  A1A2 = (2a)2+02= 2a.

Giao điểm của (E) với trục tung có x = 0 nên 02a2+y2b2=1  y2  = b2  y = ± b

Do đó, giao điểm của (E) với trục tung lần lượt là: B1(0; −b),  B2(0; b).

 B1B20;2b  B1B2 = 02+2b2= 2b.

Vậy A1(−a; 0),  A2(a; 0), B1(0; −b),  B2(0; b), A1A2 = 2a, B1B2 = 2b.

b) Vì M(x0; y0) thuộc (E) nên x02a2+y02b2=1

Vì a > b > 0 nên x02a2x02b2 (Dấu “=” xảy ra khi x0 = 0)

 x02a2+y02b2x02b2+y02b2 hay 1x02b2+y02b2=x02+y02b2 

  b2 ≤ x02+y02 (1)

Tương tự ta có: y02a2y02b2 (Dấu “=” xảy ra khi y0 = 0)

x02a2+y02b2x02a2+y02a2 hay 1x02a2+y02a2  x02+y02 ≤ a2 (2)

Từ (1) và (2) suy ra: b2  ≤ x02+y02≤  a2 (đpcm)

Mặt khác ta có: OM= (x0; y0)  OM = x02+y02

Mà b2  ≤ x02+y02≤  a2   b ≤ x02+y02 ≤  a hay b ≤ OM ≤ a (đpcm).

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 7.26 trang 58 Toán 10 Tập 2: Phương trình nào sau đây là phương trình tham số của đường thẳng? A. 2x – y + 1 = 0... 

Bài 7.27 trang 58 Toán 10 Tập 2: Phương trình nào sau đây là phương trình tổng quát của đường thẳng? A. –x – 2y + 3 = 0... 

Bài 7.28 trang 58 Toán 10 Tập 2: Phương trình nào sau đây là phương trình đường tròn ? A. x2 – y2 = 1; B. (x – 2)2 – (y – 2)2 = 1; C. x2 + y2 = 2... 

Bài 7.29 trang 58 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường elip? A. x29 + y29=1... 

Bài 7.30 trang 58 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường hypebol? A. x23 - y22 = 1... 

Bài 7.31 trang 58 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường parabol? A. x2 = 4y B. x2 = -6y... 

Bài 7.32 trang 58 Toán 10 Tập 2: Trong mặt phẳng toạ độ, cho A(1; −1), B(3; 5); C(−2; 4). Tính diện tích tam giác ABC... 

Bài 7.33 trang 58 Toán 10 Tập 2: Trong mặt phẳng toạ độ, cho hai điểm A(−1; 0) và B(3; 1) a) Viết phương trình đường tròn tâm A và đi qua B... 

Bài 7.34 trang 58 Toán 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2 – 4x + 6y – 12 = 0 a) Tìm toạ độ tâm I và bán kính R...

Bài 7.35 trang 59 Toán 10 Tập 2: Cho elip (E) x2a2 + y2b2 = 1: (a > b > 0) a) Tìm các giao điểm A1, A2 của (E) với trục hoành... 

Bài 7.36 trang 59 Toán 10 Tập 2: Cho hypebol có phương trình x2a2 - y2b2 =1: a) Tìm các giao điểm A1, A2 của hypebol với trục hoành... 

Bài 7.37 trang 59 Toán 10 Tập 2: Một cột trụ hình hyperbol (H.7.36), có chiều cao 6m, chỗ nhỏ nhất ở chính giữa và rộng 0,8m... 

Bài viết liên quan

296 lượt xem