Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để: a) Số chấm xuất hiện trên hai con xúc xắc bé hơn 3
Giải Toán 10 Kết nối tri thức Bài 26: Biến cố và định nghĩa cổ điển của xác suất
Bài 9.5 trang 82 Toán 10 Tập 2: Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để:
a) Số chấm xuất hiện trên hai con xúc xắc bé hơn 3 ;
b) Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5 ;
c) Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6;
d) Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
Lời giải
Do gieo một con xúc xắc thì số chấm xuất hiện có thể là 1, 2, 3, 4, 5, 6 nên khi gieo 2 con xúc xắc thì các kết quả của không gian mẫu được cho trong bảng:
Xúc xắc của Bình Xúc xắc của An |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1;1) |
(1;2) |
(1;3) |
(1;4) |
(1;5) |
(1;6) |
2 |
(2;1) |
(2;2) |
(2;3) |
(2;4) |
(2;5) |
(2;6) |
3 |
(3;1) |
(3;2) |
(3;3) |
(3;4) |
(3;5) |
(3;6) |
4 |
(4;1) |
(4;2) |
(4;3) |
(4;4) |
(4;5) |
(4;6) |
5 |
(5;1) |
(5;2) |
(5;3) |
(5;4) |
(5;5) |
(5;6 |
6 |
(6;1) |
(6;2) |
(6;3) |
(6;4) |
(6;5) |
(6;6) |
Từ bảng trên, mỗi ô tương ứng với một kết quả có thể. Có 36 ô, vậy n(Ω) = 36.
a) Gọi biến cố A: “Số chấm xuất hiện trên hai con xúc xắc bé hơn 3”.
Các kết quả thuận lợi của A là: (1;1), (1;2), (2;1), (2;2).
⇒ A = {(1;1), (1;2), (2;1), (2;2)}.
⇒ n(A) = 4. Khi đó .
Vậy xác suất để “số chấm xuất hiện trên hai con xúc xắc bé hơn 3” là .
b) Gọi biến cố B: “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5”.
Các kết quả thuận lợi của B là:
(5;1), (5;2), (5;3), (5;4), (5;5), (5;6), (6;1), (6;2), (6;3), (6;4), (6;5), (6;6).
⇒ B = {(5;1), (5;2), (5;3), (5;4), (5;5), (5;6), (6;1), (6;2), (6;3), (6;4), (6;5), (6;6)}.
⇒ n(B) = 12. Khi đó
Vậy xác suất để “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5” là .
c) Gọi biến cố C: “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6”.
Các kết quả thuận lợi của C là: (1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (3; 1), (4; 1), (5; 1).
⇒ C = {(1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (3; 1), (4; 1), (5; 1)}.
⇒ n(C) = 10. Khi đó .
Vậy xác suất để “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6” là .
d) Gọi biến cố D: “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố”.
Các kết quả thuận lợi của D là: (1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6; 1), (2; 3); (3; 2), (2; 5), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5).
⇒ D = {(1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6; 1), (2; 3); (3; 2), (2; 5), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5)}.
⇒ n(D) = 15. Khi đó .
Vậy xác suất để “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố” là .
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài viết liên quan
- Gieo đồng thời một con xúc xắc và một đồng xu. a) Mô tả không gian mẫu. b) Xét các biến cố sau: C: “Đồng xu xuất hiện mặt sấp
- Một túi có chứa một số bi xanh, bi đỏ, bi đen và bi trắng. Lấy ngẫu nhiên một viên bi từ trong túi. a) Gọi H là biến cố
- Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, trúng giải nhất của bạn An khi chọn bộ số
- Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G
- Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên