Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó
Giải Toán 10 Kết nối tri thức Bài tập cuối chương 6
Bài 6.30 trang 28 Toán 10 Tập 2: Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:
a) y = – x2 + 6x – 9;
b) y = – x2 – 4x + 1;
c) y = x2 + 4x;
d) y = 2x2 + 2x + 1.
Lời giải
Các hàm số đã cho đều là hàm số bậc hai nên đồ thị là một parabol.
a) Đồ thị hàm số: y = – x2 + 6x – 9.
Ta có hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
- Tọa độ đỉnh I(3; 0);
- Trục đối xứng x = 3;
- Giao điểm với trục Oy là điểm (0; – 9), điểm này có điểm đối xứng qua trục đối xứng x = 3 là (6; – 9);
- Lấy các điểm (1; – 4), (5; – 4) thuộc đồ thị hàm số.
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Từ đồ thị ta có:
+ Tập giá trị của hàm số là (– ∞; 0].
+ Hàm số đồng biến trên khoảng (– ∞; 3) (do đồ thị hàm số đi lên từ trái sang phải) và nghịch biến trên khoảng (3; + ∞) (do đồ thị hàm số đi xuống từ trái sang phải).
b) Đồ thị hàm số: y = – x2 – 4x + 1.
Ta có: hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
- Tọa độ đỉnh I(– 2; 5);
- Trục đối xứng x = – 2;
- Giao với trục Oy tại điểm (0; 1), điểm này có điểm đối xứng qua trục đối xứng x = – 2 là (– 4; 1);
- Giao với trục hoành tại hai điểm có hoành độ là nghiệm của phương trình – x2 – 4x + 1 = 0, tức là x = và x = .
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Từ đồ thị hàm số ta có:
+ Tập giá trị của hàm số là (– ∞; 5].
+ Hàm số đồng biến trên khoảng (– ∞; – 2) và nghịch biến trên khoảng (– 2; + ∞).
c) Đồ thị hàm số: y = x2 + 4x.
Ta có: hệ số a = 1 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
- Tọa độ đỉnh I(– 2; – 4);
- Trục đối xứng x = – 2;
- Cắt trục Oy tại điểm gốc tọa độ O(0; 0);
- Điểm đối xứng với O qua trục đối xứng x = – 2 là điểm (– 4; 0);
- Lấy các điểm (– 1; – 3), (– 3; – 3) thuộc parabol.
Vẽ đường cong đi qua các điểm trên ta được đồ thị cần vẽ.
Từ đồ thị hàm số ta có:
+ Tập giá trị của hàm số là [– 4; + ∞).
+ Hàm số nghịch biến trên khoảng (– ∞; – 2) và đồng biến trên khoảng (– 2; + ∞).
d) Đồ thị hàm số: y = 2x2 + 2x + 1.
Ta có: hệ số a = 2 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
- Tọa độ đỉnh I;
- Trục đối xứng x = ;
- Giao với trục Oy tại điểm (0; 1), điểm này có điểm đối xứng qua trục đối xứng x = là (– 1; 1);
- Lấy các điểm (1; 5) và (– 2; 5) thuộc đồ thị.
Vẽ đường cong đi qua các điểm đã cho ta được đồ thị cần vẽ.
Từ đồ thị hàm số ta có:
+ Tập giá trị của hàm số là .
+ Hàm số nghịch biến trên khoảng và đồng biến trên khoảng .
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: