Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r
Giải Toán 10 Kết nối tri thức Bài 25: Nhị thức Newton
Bài 8.16 trang 75 Toán 10 Tập 2: Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%.
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức tính số dân của tỉnh đó sau 5 năm nữa là (nghìn người).
b) Với r = 1,5, dùng hai số hạng đầu trong khai triển của (1 + 0,015)5, hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
Lời giải
a) Để tính số dân năm sau, ta lấy số dân năm trước cộng với số dân tăng hằng năm (Số dân tăng hằng năm là r% của số dân năm trước).
Số dân của tỉnh đó sau 1 năm là:
(nghìn người).
Số dân của tỉnh đó sau 2 năm là:
(nghìn người).
Suy ra công thức tính số dân của tỉnh đó sau 5 năm nữa là:
(nghìn người).
b) Với r = 1,5, suy ra .
Ta có khai triển:
(1 + 0,015)5
= 15 + 5 . 14 . 0,015 + 10 . 13 . (0,015)2 + 10 . 12 . (0,015)3 + 5 . 1 . (0,015)4 + (0,015)5.
Do đó: (1 + 0,015)5 ≈ 15 + 5 . 14 . 0,015 = 1,075.
Số dân của tỉnh đó sau 5 năm nữa là:
P5 = 800 . (1 + 0,015)5 ≈ 800 . 1,075 = 860 (nghìn người).
Vậy số dân của tỉnh đó sau 5 năm nữa khoảng 860 nghìn người.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Mở đầu trang 72 Toán 10 Tập 2: Ở lớp 8, khi học về hằng đẳng thức, ta đã biết khai triển: (a + b)2 = a2 + 2ab + b2; (a + b)3 = a3 + 3a2b + 3ab2 + b3...
Luyện tập 1 trang 73 Toán 10 Tập 2: Khai triển (x – 2)4...
Luyện tập 2 trang 74 Toán 10 Tập 2: Khai triển (3x – 2)5...
Bài 8.13 trang 74 Toán 10 Tập 2: Tìm hệ số của x^4 trong khai triển của (3x –1)5...
Bài viết liên quan
- Biểu diễn (3+ căn 2)^5 -(3-căn 2)^5 dưới dạng a + b căn 2 với a, b là các số nguyên
- a) Dùng hai số hạng đầu tiên trong khai triển của (1 + 0,02)^5 để tính giá trị gần đúng của 1,02^5
- Số cách cắm 4 bông hoa khác nhau vào 4 bình hoa khác nhau (mỗi bông hoa cắm vào một bình) là A. 16 B. 24. C. 8. D. 4
- Số các số có ba chữ số khác nhau, trong đó các chữ số đều lớn hơn 0 và nhỏ hơn hoặc bằng 5 là A. 120. B. 60 C. 720. D. 2
- Số cách chọn 3 bạn học sinh đi học bơi từ một nhóm 10 bạn học sinh là A. 3 628 800. B. 604 800 C. 120. D. 720