Cho tam giác ABC có trung tuyến AM. Chứng minh rằng

Lời giải Bài 3.16 trang 44 Toán 10 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.
195 lượt xem


Giải Toán lớp 10 Bài tập cuối chương 3

Bài 3.16 trang 44 Toán 10 tập 1: Cho tam giác ABC có trung tuyến AM. Chứng minh rằng:

a) cosAMB^+cosAMC^=0;

b) MA2 + MB2 – AB2 = 2MA.MB.cosAMB^ và MA2 + MC2 – AC2 = 2MA.MC.cosAMC^;

c) MA2=2AB2+AC2BC24 (công thức đường trung tuyến).

Lời giải:

Cho tam giác ABC có trung tuyến AM. Chứng minh rằng (ảnh 1)

a) Ta có: AMB^+AMC^=180o

 AMC^=180oAMB^

 cosAMB^=cos180oAMB^=cosAMC^

 cosAMB^+cosAMC^=cosAMC^+cosAMC^=0

Vậy cosAMB^+cosAMC^=0 (đpcm)

b) Áp dụng định lí côsin trong ΔAMB, ta có:

AB2 = MA2 + MB2 – 2MA.MB.cosAMB^ 

 MA2 + MB2 – AB2 = 2MA.MB.cosAMB^ (1)

Áp dụng định lí côsin trong ΔAMC, ta có:

AC2 = MA2 + MC2 – 2MA.MC.cosAMC^

 MA2 + MC2 – AC2 = 2MA.MC.cosAMC^ (2)

Từ (1) và (2) suy ra điều phải chứng minh.

c) Từ (1) suy ra: MA2 = AB2 – MB2 2MA.MB.cosAMB^

Từ (2) suy ra: MA2 = AC2 – MC2 2MA.MC.cosAMC^

Cộng vế với vế, ta được:

2MA2 = (AB2 – MB2 2MA.MB.cosAMB^) + (AC2 – MC2 2MA.MC.cosAMC^)

2MA2 = AB2 AC2 – MB2 – MC2 2MA.MB.cosAMB^ + 2MA.MC.cosAMC^

 MB=MC=BC2(do AM là trung tuyến) nên:

2MA2 = AB2 AC2 – BC22 – BC22 2MA.MB.cosAMB^ + 2MA.MB.cosAMC^

2MA2 = AB2 AC2 – 2.BC22 2MA.MB.(cosAMB^ + cosAMC^)

2MA2 = AB2 AC2 – BC22

 MA2=AB2+AC2BC222

MA2=2AB2+AC2BC24 (công thức đường trung tuyến).

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Bài viết liên quan

195 lượt xem