Vị trí tương đối của đường thẳng và đường tròn và cách giải bài tập - Toán lớp 9
Hamchoi.vn giới thiệu 50 Vị trí tương đối của đường thẳng và đường tròn và cách giải bài tập - Toán lớp 9 lớp 9 gồm các dạng bài tập có phương pháp giải chi tiết và các bài tập điển hình từ cơ bản đến nâng cao giúp học sinh biết cách làm. Bên cạnh có là 12 bài tập vận dụng để học sinh ôn luyện dạng Toán 9 này.
Vị trí tương đối của đường thẳng và đường tròn và cách giải bài tập - Toán lớp 9
I. Lý thuyết
Cho đường thẳng và đường tròn (O; R). Gọi OH là khoảng cách từ tâm O đến đường thẳng . Ta có ba vị trí tương đối của đường thẳng và đường tròn như sau:
Trường hợp 1: Nếu không cắt (O) thì OH > R ; và (O) không có điểm chung. Ta nói đường thẳng ∆ và đường tròn (O) không giao nhau.
Trường hợp 2: Nếu và (O) tiếp xúc nhau thì OH = R; và (O) có một điểm chung. Điểm chung đó là H. Khi đó, là tiếp tuyết của đường tròn (O).
Trường hợp 3: Nếu và (O) cắt nhau thì OH < R; và (O) có hai điểm chung là A và B. Khi đó, ta gọi đường thẳng là cát tuyến của đường tròn (O).
2. Định nghĩa về tiếp tuyến
Nếu đường thẳng và đường tròn (O) chỉ có một điểm chung thì ta nói là tiếp tuyến của đường tròn (O). Điểm chung đó gọi là tiếp điểm.
3. Định lý về tiếp tuyến
Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm của đường tròn đó.
Có là tiếp tuyến của đường tròn (O) tại điểm H, khi đó tại H.
II. Các dạng bài tập
Dạng 1: Cho biết bán kính đường tròn và khoảng cách từ tâm đến đường thẳng, xác định vị trí tương đối của đường thẳng và đường tròn
Phương pháp giải: Gọi khoảng cách từ tâm đường tròn đến đường thẳng là d; bán kính là R ta so sánh d với R rồi dựa vào kiến thức về vị trí tương đối của đường thẳng và đường tròn để kết luận.
+ Nếu d > R thù đường thẳng và đường tròn không cắt nhau.
+ Nếu d = R thì đường thẳng và đường tròn tiếp xúc nhau.
+ Nếu d < R thì đường thẳng và đường tròn cắt nhau.
Ví dụ 1: Cho điểm B(2;4). Hãy xác định vị trí tương đối của đường tròn (B; 3) với hai trục Ox; Oy.
Lời giải:
Vẽ BC OyBC = 2
Vẽ BD Ox BD = 4
Vì BC < R (2 < 3) nên đường tròn cắt trục Oy tại hai điểm E và F hay (B) cắt trục Oy
Vì BD > R (4 > 3) nên đường tròn và trục Ox không có điểm chung hay (B) và Ox không cắt nhau.
Ví dụ 2: Điền vào chỗ chấm biết R là bán kính đường tròn và d là khoảng cách từ tâm đường tròn đến đường thẳng.
R |
d |
Vị trí tương đối của đường thẳng với đường tròn |
5cm |
6cm |
…………………….. |
6cm |
5cm |
…………………….. |
… |
7cm |
Đường thẳng và đường tròn tiếp xúc nhau |
11cm |
11cm |
……………………. |
Lời giải:
R |
d |
Vị trí tương đối của đường thẳng với đường tròn |
5cm |
6cm |
Đường thẳng không cắt đường tròn |
6cm |
5cm |
Đường thẳng cắt đường tròn |
7cm |
7cm |
Đường thẳng và đường tròn tiếp xúc nhau |
11cm |
11cm |
Đường thẳng và đường tròn tiếp xúc nhau |
Dạng 2: Xác định vị trí tâm đường tròn có bán kính cho trước và tiếp xúc với một đường thẳng cho trước
Phương pháp giải: Xác định khoảng cách từ tâm đường tròn đến đường thẳng cho trước rồi sử dụng tính chất điểm cách đều một đường thẳng cho trước một khoảng cách không đổi.
Ví dụ 1: Cho hai đường thẳng a và b song song với nhau cách nhau một khoảng là 4cm. Lấy điểm O trên a vẽ đường tròn (O; 4cm). Chứng minh O tiếp xúc với b.
Lời giải:
Vì Oa nên O cũng cách b một khoảng 4cm.
Mà bán kính đường tròn cũng là 4cm
(O;4cm) tiếp xúc với b.
Ví dụ 2: Cho hai đường thẳng và song song với nhau và cách nhau một khoảng 6cm. Vẽ đường tròn (O;4cm) có tâm O nằm trên đường thẳng song song với và cách là 4cm và cách là 2cm. Chứng minh (O;4cm) tiếp xúc với và cắt .
Lời giải:
Gọi G hình chiếu của O lên OG là khoảng cách từ O đến
Vì O nằm trên đường thẳng song song với và cách một khoảng là 2cm nên OG = 2cm
Ta có: OG < R (2 < 4) nên (O;4cm) cắt
Gọi I là hình chiếu của O lên OI là khoảng cách từ O đến
Vì O nằm trên đường thẳng song song với và cách một khoảng là 4cm nên OI = 4cm
Ta có: OI = R = 4cm nên (O;4cm) tiếp xúc với .
Ví dụ 3: Cho hai đường thẳng và song song với nhau cách nhau một khoảng 6cm. Một đường tròn tâm O tiếp xúc với cả hai đường thẳng và . Hỏi tâm O nằm trên đường nào.
Lời giải:
Vẽ OGOG là khoảng cách từ O đến
Vẽ OE OE là khoảng cách từ O đến
Vì (O) tiếp xúc với và OG = OE = R (với R là bán kính đường tròn)
Mà và cách nhau một khoảng 6cm
Do đó OG = OE = 3cm
Vậy tâm O nằm trên đường thẳng cách và là 3cm. Đường thẳng đó song song với và .
Ví dụ 4: Cho hình vuông ABCD. Trên đường chéo BD lấy H sao cho BH = AB. Qua H kẻ đường thẳng vuông góc với BD cắt AD cắt AD tại O.
a) So sánh OA; OH và HD.
b) Xác định vị trí tương đối của BD với (O; OA).
Lời giải:
a) Xét và có:
OB chung
AB = BH (giả thuyết)
Do đó =(cạnh huyền – cạnh góc vuông)
OA = OH (hai cạnh tương ứng) (1)
Xét tam giác OHD vuông tại H có (do BD là đường chéo của hình vuông ABCD)
là tam giác vuông cân tại H
OH = HD (2)
Từ (1) và (2) OH = HD = OA
b) Vì OA = OH và OHBD nên BD là tiếp tuyến của đường tròn (O;OA)
Vậy BD tiếp xúc với (O;OA).
Dạng 3: Bài toán liên quan đến tính độ dài
Phương pháp giải: Nối tâm với điểm rồi vận dụng định lí về tính chất của tiếp tuyến và định lý Py – ta – go.
Ví dụ 1: Cho đường tròn tâm O bán kính 8cm và một điểm A cách O là 10cm. Kẻ AB là tiếp tuyến, B là tiếp điểm. Tính AB.
Lời giải:
Vì AB là tiếp tuyến của (O), B là tiếp điểm nên AB OB
Xét tam giác OAB vuông tại B ta có:
(định lý Py – ta – go)
Thay OA = 10cm; OB = 8cm ta có:
Vậy AB = 6cm.
Ví dụ 2: Cho đường tròn (O;8), Từ M ngoài (O) vẽ hai tiếp tuyến AM và BM sao cho AMBM tại M với A, B là hai tiếp điểm.
a) Tính AM và BM.
b) Gọi I là giao điểm của OM với (O) (I nằm giữa O và M). Tại I kẻ tiếp tuyến với (O) và cắt OA, OB lần lượt ở C và D. Tính CD.
Lời giải:
a) Vì A, B là tiếp điểm nên OAAM và OBBM
Lại có: MAMB
Xét tứ giác OBMA có:
tứ giác OBMA là hình chữ nhật
Lại có OB = OA = R
Do đó tứ giác OBMA là hình vuông
Mà OA = OB = R = 8
Nên MA = MB = 8 (đơn vị độ dài)
b) Vì OBMA là hình vuông nên OM là đường phân giác góc O
Vì CD là tiếp tuyến; I là tiếp điểm nên CDOI
Xét tam giác OIC vuông tại I ta có:
=
tam giác OIC cân tạI I (tính chất)
IC = IO = R = 8
Xét tam giác OID vuông tại I ta có:
=
Tam giác OID cân tại I
ID = IO = 8
Ta có:
CD = ID + IC = 8 + 8 = 16 (đơn vị độ dài).
III. Bài tập tự luyện
Phần 1: Trắc nghiệm
Câu 1: Câu nào sau đây là đúng.
A. Đường thẳng tiếp xúc với đường tròn khi đường thẳng có một giao điểm với đường tròn.
B. Đường thẳng cắt đường tròn khi đường thẳng có một giao điểm với đường tròn.
C. Đường thẳng không cắt đường tròn khi khoảng cách từ tâm của đường tròn đến đường thẳng nhỏ hơn bán kính.
D. Khoảng cách từ tâm đường tròn đến đường thẳng nhỏ hơn R thì đường thẳng tiếp xúc với đường tròn.
Câu 2: Cho (O;6cm) và đường thẳng a. Gọi d là khoảng cách từ tâm O đến đường thẳng a. Điều kiện để a cắt O là:
A. Khoảng cách d < 6cm
B. Khoảng cách d = 6cm
C. Khoảng cách d > 6cm
D. Khoảng cách d6cm
Câu 3: Cho điểm A(3;4). Khi đó đường tròn (A;4) sẽ có vị trí như thế nào với hai trục Ox; Oy.
A. Cắt Ox và tiếp xúc với Oy
B. Cắt cả Ox và Oy
C. Cắt Oy và tiếp xúc với Ox
D. Tiếp xúc với Ox và không giao với Oy
Câu 4: Cho đường thẳng d. Tâm các đường tròn có bán kính là 2 và tiếp xúc với d nằm trên đường nào?
A. Một đường thẳng song song với d cách d một khoảng bằng 1cm
B. Một đường thẳng song song với d cách d một khoảng là 2cm
C. Hai đường thẳng song song với d cách d một khoảng là 1cm
D.Hai đường thẳng song song với d cách d một khoảng là 2cm
Phần 2: Tự luận
Bài 1: Trên mặt phẳng tọa độ Oxy cho A(2;5). Vẽ đường tròn (A;3). Xác định vị trí tương đối của (A;3) với hai trục Ox; Oy.
Bài 2: Xác định tâm đường tròn có bán kính 5cm tiếp xúc với đường thẳng d nằm trên đường nào.
Bài 3: Cho đường tròn (O;R) và dây , vẽ một tiếp tuyến song song với AB, cắt các tia OA, OB lần lượt tại M và N. Tính diện tích tam giác OMN theo R.
Bài 4: Cho đường tròn (O) đường kính AB = 2R. Bán kính OC vuông góc với AB. Lấy điểm F thuộc đoạn OB. Kẻ CF cắt đường tròn (O) tại D vẽ tiếp tuyến của đường tròn tại D cắt AB tại E.
Chứng minh EF = ED.
Bài 5: Cho điểm A cách đường thẳng xy là 12cm
a) Chứng minh (A;13cm) cắt đường thẳng xy tại hai điểm phân biệt.
b) Gọi giao điểm của (A;13cm) với xy là C và D. Tính độ dài đoạn thẳng CD.
Bài 6: Cho đường tròn (O) đường kính AB. Một điểm M thay đổi trên đường tròn (M khác A và B). Vẽ đường tròn (M) tiếp xúc với AB tại H. Từ A và B kẻ hai tiếp tuyến trên AC, BD đến đường tròn (M)
a) Chứng minh: CD là tiếp tuyến của đường tròn (O).
b) Chứng minh AC + BD không đổi.
c) Tính giá trị lớn nhất của AC.BD.
Bài 7: Cho đường tròn (O;R) đường kính AB. Trên tia đối tia AB lấy điểm C. Từ C kẻ tiếp tuyến CD với (O). Kẻ DH AB tại H
Chứng minh: CH.CO = CA.CB.
Bài 8: Cho nửa đường tròn (O), đường kính AB. Lấy điểm C thuộc (O) và gọi d là tiếp tuyến qua C với (O). Kẻ AE và BF cùng vuông góc với d; CH vuông góc với AB.
a) Chứng minh: CE = CF và .
b) Khi C di chuyển trên nửa đường tròn, tìm vị trí của C để EF lớn nhất.
Đáp án trắc nghiệm
Câu 1: A
Câu 2: A
Câu 3: C
Câu 4: D
Các dạng bài tập Đường tròn
Bài viết liên quan
- Cách xác định đường tròn và tính chất đối xứng của đường tròn - Toán lớp 9
- Các dạng toán về dây cung của đường tròn và cách giải - Toán lớp 9
- Các dạng bài toán về tiếp tuyến của đường tròn và cách giải - Toán lớp 9
- Vị trí tương đối của hai đường tròn và cách giải bài tập - Toán lớp 9
- Công thức liên hệ đường kính và dây cung hay, chi tiết - Toán lớp 9