Bài toán về điểm và vectơ
-
297 lượt thi
-
24 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho hai điểm A(1;2;−1) và B(−1;3;1). Tọa độ điểm M nằm trên trục tung sao cho tam giác ABM vuông tại M .
M nằm trên trục tung, giả sử M(0;m;0). Ta có
và
Vì tam giác ABM vuông tại M nên ta có
Đáp án cần chọn là: A
Câu 2:
Trong không gian với hệ tọa độ Oxyz , cho điểm M thỏa mãn hệ thức Tọa độ của điểm M là
Ta có:
Đáp án cần chọn là: D
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho và . Tọa độ của là:
Ta có:
Suy ra
Đáp án cần chọn là: A
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−2;3),B(1;0;−1). Gọi M là trung điểm đoạn AB. Khẳng định nào sau đây là đúng?
Ta có: Suy ra A sai.
Suy ra D sai.
Có B đúng.
Mà M là trung điểm của AB nên C sai.
Đáp án cần chọn là: B
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;−3;5),N(6;−4;−1) và đặt . Mệnh đề nào sau đây là mệnh đề đúng?
Ta có
Do đó
Đáp án cần chọn là: B
Câu 6:
Kiểm tra lần lượt các điều kiện
Lại có: nên và không vuông góc.
Đáp án cần chọn là: D
Câu 7:
Trong không gian Oxyz cho 3 véc tơ: Kết luận nào sau đây đúng
Tính.Suy ra loại A
Tính.Suy ra đồng phẳng.
Đáp án cần chọn là: C
Câu 8:
Trong không gian với hệ tọa độ Oxyz, cho ba điểmA(1;1;1),B(−1;−1;0) và C(3;1;−1). Tìm tọa độ điểm M thuộc (Oxy) và cách đều các điểm A,B,C .
MM thuộc mặt phẳng (Oxy), giả sử M(m;n;0).
Ta có
Vì M cách đều ba điểm A,B,C nên ta có
Vậy
Câu 9:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2) , B(−1;2;4). Tìm tọa độ điểm M thuộc trục Oz sao cho :.
M nằm trên trục Oz, giả sử M(0;0;m).
Ta có
Theo giả thiết suy ra ta có
Vậy M(0;0;1) hoặc M(0;0;5)
Đáp án cần chọn là: A
Câu 10:
Trong không gian với hệ tọa độ Oxyz , để hai vecto và cùng phương thì 2m+3n bằng.
Hai vectơ cùng phương khi
Đáp án cần chọn là: D
Câu 11:
Cho tam giác ABC biết A(2;4;−3) và trọng tâm G của tam giác có toạ độ là G(2;1;0). Khi đó có tọa độ là
Gọi M là trung điểm của BC. Ta có
Do tính chất trọng tâm có.Suy ra
Mà.Suy ra
Đáp án cần chọn là: A
Câu 12:
Chú ý rằng
Sử dụng công thức, ta được
Đáp án cần chọn là: C
Câu 13:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1),B(2;−1;3),C(−3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Có và
ABCD là hình bình hành khi và chỉ khi
Đáp án cần chọn là: D
Câu 14:
Có và
Tính
Áp dụng công thức tính diện tích hình bình hành có
Đáp án cần chọn là: C
Câu 15:
Trong không gian với hệ tọa độ Oxyz, các điểm A(1;2;3),B(3;3;4),C(−1;1;2) sẽ:
Cóvà
Nhận thấy và là hai vectơ đối nhau.
Đáp án cần chọn là: A
Câu 16:
Trong không gian với hệ tọa độ Oxyz, cho ba vectơ và Giá trị m bằng bao nhiêu để
Ta có:
Đáp án cần chọn là: A
Câu 17:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;−1), B(2;0;1). Tìm tọa độ điểm M nằm trên trục Ox sao cho : đạt giá trị bé nhất.
M nằm trên trục Ox, giả sử M(m;0;0).
Ta có
Suy ra
Vậy M(1;0;0)
Đáp án cần chọn là: B
Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1;2;−1), B(2;−1;3), C(−4;7;5). Tọa độ chân đường phân giác trong góc của tam giác ABC là:
Gọi D là chân đường phân giác trong góc của tam giác ABC
Ta có. Tính được
Suy ra
Gọi D(x;y;z). Từ
Đáp án cần chọn là: A
Câu 19:
Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A′B′C′D′ biết A(1;0;1), B(2;1;2), D(1;−1;1) và C′(4;5;−5). Khi đó, thể tích của hình hộp đó là:
Ta có
là hình hộp là hình bình hành. Khi đó ta có
Giả sử C(x;y;z). Ta có:
Ta có
Theo công thức tính thể tích ta có
Đáp án cần chọn là: A
Câu 20:
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có A(2;−1;1), B(3;0;−1), C(2;−1;3) và D thuộc trục Oy . Tính tổng tung độ của các điểm D, biết thể tích tứ diện bằng 5.
Giả sử
Ta có
Theo công thức tính thể tích ta có
Theo giả thiết ta có suy ra ta có:
Suy ra D(0;12;0) hoặc D(0;−18;0)
Do đó tổng tung độ của các điểm D là
Đáp án cần chọn là: A
Câu 21:
Trong không gian Oxyz, cho hai điểm A(4;0;4) và B(2;4;0). Điểm M di động trên tia Oz, điểm N di động trên tia Oy. Đường gấp khúc AMNB có độ dài nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng phần chục).
Ta có H(0;0;4) và K(0;4;0) là hình chiếu của A trên Oz và B trên Oy
Gọi
Xét hai tam giác vuông có chung
(2 cạnh góc vuông)
Chứng minh tương tự ta có
Độ dài đường gấp khúc AMNB là
(Lưu ý rằng các điểm cùng nằm trên mặt phẳng Oyz).
Đáp án cần chọn là: D
Câu 22:
Trong không gian với hệ tọa độ Oxyz, cho ba vectơ và . Giá trị m bằng bao nhiêu để ba vectơ đồng phẳng
Ta có
đồng phẳng khi
Đáp án cần chọn là: B
Câu 23:
Cho A(1;2;5),B(1;0;2),C(4;7;−1),D(4;1;a). Để 4 điểm A,B,C,D đồng phẳng thì a bằng:
Có
A,B,C,D đồng phẳng khi
Đáp án cần chọn là: A
Câu 24:
Trong không gian với hệ tọa độ Oxyz , để hai vecto và cùng phương thì 2m+3n bằng.
Hai vectơ cùng phương khi
Đáp án cần chọn là: D