Thứ sáu, 15/11/2024
IMG-LOGO
Trang chủ Lớp 11 Toán Giải SGK Toán 11 Hình học - Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Giải SGK Toán 11 Hình học - Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Bài 4: Hai mặt phẳng song song

  • 2058 lượt thi

  • 7 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Cho hai mặt phẳng song song αβ. Đường thẳng d nằm trong α (h.2.47). Hỏi d và β có điểm chung không?

Cho hai mặt phẳng song song anlpha và belta. Đường thẳng d nằm trong anlpha (ảnh 1)

Xem đáp án

Hai mặt phẳng song song α và β α và β không có điểm chung

Đường thẳng d nằm trong αĐường thẳng d không thể cắt mặt phẳng β. Vì nếu d cắt mặt phẳng β tức là d và β có điểm chung

hai mặt phẳng α và β có điểm chung (mâu thuẫn với giả thiết)

Vậy d và β không có điểm chung


Câu 2:

Cho tứ diện SABC. Hãy dựng mặt phẳng (α) qua trung điểm I của đoạn SA và song song với mặt phẳng (ABC).

Cho tứ diện SABC. Hãy dựng mặt phẳng anlpha qua trung điểm I của đoạn SA  (ảnh 1)

Xem đáp án

Mặt phẳng (α) là mặt phẳng đi qua 3 trung điểm I, K, L của SA, SB, SC

Thật vậy, do I, K , L lần lượt là trung điểm của SA, SB, SC nên IK, KL lần lượt là đường trung bình trong tam giác SAB và SBC

IK//AB(ABC)IK//(ABC)

KL // BC  (ABC)  KL // (ABC)

IK và KL cắt nhau và cùng // (ABC)

 

⇒ Mặt phẳng chứa IK và KL // (ABC) hay (α) // (ABC)


Câu 3:

Phát biểu định lý Ta-lét trong hình học phẳng.

Xem đáp án

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ


Câu 5:

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.

a) Chứng minh rằng AM song song với A’M’.

b) Tìm giao điểm của mặt phẳng (A’B’C’) với đường thẳng A’M.

c) Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (BA’C’).

d) Tìm giao điểm G của đường thẳng d với mp(AMA’). Chứng minh G là trọng tâm của tam giác AB’C’.

Xem đáp án

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của (ảnh 1)

a) Do ABC.A’B’C’ là hình lăng trụ nên ta có: BCC’B’ là hình bình hành

Xét tứ giác BCC’B’ có M và M’ lần lượt là trung điểm của BC và B’C’ nên MM’ là đường trung bình

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Lại có: AA’// BB’ và AA’= BB’ ( tính chất hình lăng trụ) (2)

Từ (1) và (2) suy ra: MM’// AA’ và MM’ = AA’

=> Tứ giác AMM’A’ là hình bình hành

b) Trong (AMM’A’) gọi O = A’M ∩ AM’, ta có :

Ta có : O ∈ AM’ ⊂ (AB’C’)

⇒ O = A’M ∩ (AB’C’).

c)

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của (ảnh 2)

Gọi K = AB’ ∩ BA’, ta có :

K ∈ AB’ ⊂ (AB’C’)

K ∈ BA’ ⊂ (BA’C’)

⇒ K ∈ (AB’C’) ∩ (BA’C’)

Dễ dàng nhận thấy C’ ∈ (AB’C’) ∩ (BA’C’)

⇒ (AB’C’) ∩ (BA’C’) = KC’.

Vậy d cần tìm là đường thẳng KC’

d) Trong mp(AB’C’), gọi C’K ∩ AM’ = G.

Ta có: G ∈ AM’ ⊂ (AM’M)

G ∈ C’K.

⇒ G = (AM’M) ∩ C’K.

+ K = AB’ ∩ A’B là hai đường chéo của hình bình hành ABB’A’

⇒ K là trung điểm AB’.

ΔAB’C’ có G là giao điểm của 2 trung tuyến AM’ và C’K

⇒ G là trọng tâm ΔAB’C’.


Câu 6:

Cho hình hộp ABCD.A’B’C’D’.

a) Chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.

b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và G2 lần lượt của hai tam giác BDA’ và B’D’C.

c) Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.

d) Gọi O và I lần lượt là tâm các hình bình hành ABCD và AA’C’C. Xác định thiết diện của mặt phẳng (A’IO) với hình hộp đã cho.

Xem đáp án

Cho hình hộp ABCD.A’B’C’D’.  a) Chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song (ảnh 1)

a) + A’D’ // BC và A’D’ = BC

⇒ A’D’CB là hình bình hành

⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)

+ BB’ // DD’ và BB’ = DD’

⇒ BDD’B’ là hình bình hành

⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)

A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)

Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).

b) Gọi O = AC ∩ BD

+ Ta có: O ∈ AC ⊂ (AA’C’C)

⇒ A’O ⊂ (AA’C’C).

Trong (AA’C’C), gọi A’O ∩ AC’ = G1.

G1 ∈ A’O ⊂ (A’BD)

⇒ G1 ∈ AC’ ∩ (BDA’).

+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’

⇒ A’I = IC.

⇒ AI là trung tuyến của ΔA’AC

⇒ G1 = A’O ∩ AC’ là giao của hai trung tuyến AI và A’O của ΔA’AC

⇒ G1 là trọng tâm ΔA’AC

⇒ A’G1 = 2.A’O/3

⇒ G1 cũng là trọng tâm ΔA’BD.

Vậy AC' đi qua trọng tâm G1 của ΔA’BD.

Chứng minh tương tự đối với điểm G2.

c) *Vì G1 là trọng tâm của ΔAA’C nên AG1/AI = 2/3 .

Vì I là trung điểm của AC’ nên AI = 1/2.AC’

Từ các kết quả này, ta có : AG1 = 1/3.AC’

*Chứng minh tương tự ta có : C’G2 = 1/3.AC’

Suy ra : AG1 = G1G2 = G2C’ = 1/3.AC’.

d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.


Câu 7:

Cho hình chóp S. ABCD. Gọi A1 là trung điểm của cạnh SA và A2 là trung điểm của đoạn AA1. Gọi (α)(β) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua A1, A2. Mặt phẳng (α) cắt các cạnh SB, SC, SD lần lượt tại B1, C1, D1 . Mặt phẳng (β) cắt các cạnh SB, SC, SD lần lượt tại B2, C2, D2. Chứng minh:

a) B1, C1, D1 lần lượt là trung điểm của các cạnh SB, SC, SD.

b) B1B2 = B2B, C1C2 = C2C, D1D2 = D2D.

c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD.

Cho hình chóp S. ABCD. Gọi A1 là trung điểm của cạnh SA và A2 là trung điểm của đoạn (ảnh 1)

Xem đáp án

a) Chứng minh B1, C1, D1 lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

(α)//(ABCD)(SAB)(α)=A1 B1(SAB)(ABCD)=AB}A1 B1//AB

⇒A1B1 là đường trung bình của tam giác SAB.

⇒ B1 là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C1 là trung điểm của SC.

• D1 là trung điểm của SD.

b) Chứng minh B1B2 = B2B, C1C2 = C2C, D1D2 = D2D.

(α)//(β) (vì cùng song song  mp(ABCD))(SAB)(α)=A1 B1(SAB)(β)=A2 B2}A1 B1//A2 B2

⇒A2B2 là đường trung bình của hình thang A1B1BA

⇒ B2 là trung điểm của B1B

⇒ B1B2 = B2B (đpcm)

*Chứng minh tương tự ta cũng được:

• C2 là trung điểm của C1C2 ⇒ C1C2 = C2C

• D2 là trung điểm của D1D2 ⇒ D1D2 = D2D.

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A1B1C1D1.ABCD và A2B2C2D2.ABCD


Bắt đầu thi ngay