Giải SGK Toán 11 Hình học Chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng
Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau
-
2630 lượt thi
-
5 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho hình vuông ABCD, gọi O là giao điểm của AC và BD. Tìm ảnh của các điểm A, B, O qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc 90° và phép đối xứng qua đường BD (h.1.41).
- Ảnh của A, B, O qua phép quay tâm O góc lần lượt là: D, A, O
- Ảnh của D, A, O qua phép đối xứng qua đường thẳng BD là: D, C, O
Câu 2:
Hãy chứng minh tính chất 1.
Gợi ý. Sử dụng tính chất điểm B nằm giữa hai điểm A và C khi và chỉ khi AB + BC = AC (h.1.43).
Áp dụng định nghĩa: phép dời hình là phép biến hình bảo toàn khoảng cảnh giữa hai điểm bất kỳ
Nên ảnh của 3 điểm A, B, C qua phép dời hình F là 3 điểm A', B', C'
Khi đó:
AB = A'B', BC = B'C', AC = A'C'
Ta có: A, B, C thằng hàng và B nằm giữa A và C ⇒ AB + BC = AC
⇒ A'B' + B'C' = A'C'
Hay A', B', C' thẳng hàng và B' nằm giữa A' và C'
Câu 3:
Gọi A’, B’ lần lượt là ảnh của A, B qua phép dời hình F. Chứng minh rằng nếu M là trung điểm của AB thì M’ = F(M) là trung điểm của A’B’.
Gọi A', B', M' lần lượt là ảnh của A, B, M qua phép dời hình F
Theo tính chất 1 ⇒ AB = A'B' và AM = A'M' (1)
M là trung điểm AB ⇒ AM = 1/2 AB
Kết hợp (1) ⇒ A'M' = 1/2 A'B' ⇒ M' là trung điểm A'B'
Câu 4:
Cho hình chữ nhật ABCD. Gọi E, F, H, I theo thứ tự là trung điểm của các cạnh AB, CD, BC, EF. Hãy tìm một phép dời hình biến tam giác AEI thành tam giác FCH (h.1.46)
- Phép đối xứng qua tâm I biến ΔAEI thành ΔCFI
- Phép đối xứng qua trục d biến ΔCFI thành ΔFCH
Câu 5:
Cho hình chữ nhật ABCD. Gọi I là giao điểm của AC và BD. Gọi E, F theo thứ tự là trung điểm của AD và BC. Chứng minh rằng các hình thang AEIB và CFID bằng nhau
I là giao điểm AC và BD nên I là trung điểm của AC và BD
Mà AC = BD ⇒ AI = BI = 1/2 AC = 1/2 BD
Gọi E, F theo thứ tự là trung điểm của AD và BC ⇒ EF là đường trung bình của
hình chữ nhật ABCD và AE = BF = 1/2 AD = 1/2 BC
⇒ EF // AB ⇒ EF vuông góc với AD và EF vuông góc với BC
Xét hai tam giác vuông AEI và BFI có:
AI = BI
AE = BF
⇒ ΔAEI = ΔBFI (cạnh huyền – cạnh góc vuông)
⇒ EI = FI (hai cạnh tương ứng)
⇒ I là trung điểm EF
Do đó, phép đối xứng qua tâm I biến hình thang AEIB thành hình thang CFID
⇒ Hai hình thang AEIB và CFID bằng nhau