Giải SGK Toán 11 Hình học Chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng
Bài tập ôn tập chương 1
-
2634 lượt thi
-
7 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 2:
Trong mặt phẳng tọa độ Oxy cho điểm A(-1; 2) và đường thẳng d có phương trình 3x + y + 1 = 0. Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ v = (2; 1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc 90o.
Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.
⇒ (d’): 3x + y – 6 = 0.
b. ĐOy (A) = A1 (1 ; 2)
Lấy B(0 ; -1) ∈ d
Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).
⇒ d1 = ĐOy (d) chính là đường thẳng A1B.
⇒ d1: 3x – y – 1 = 0.
c. Phép đối xứng tâm O biến A thành A2(1; -2).
d2 là ảnh của d qua phép đối xứng tâm O
⇒ d2 // d và d2 đi qua A2(1 ; -2)
⇒ (d2): 3x + y – 1 = 0.
d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.
Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).
Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)
Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’
Do đó phương trình d’ là :
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3 ; -2), bán kính 3.
a. Viết phương trình của đường tròn đó.
b. Viết phương trình ảnh của đường tròn (I ; 3) qua phép tịnh tiến theo vectơ v = (-2 ; 1).
c. Viết phương trình ảnh của đường tròn (I ; 3) qua phép đối xứng trục Ox.
d. Viết phương trình ảnh của đường tròn (I ; 3) qua phép đối xứng qua gốc tọa độ.
a. Phương trình đường tròn : (x – 3)2 + (y + 2)2 = 9.
b. (I1; R1) là ảnh của (I; 3) qua phép tịnh tiến theo vec tơ v.
⇒ Phương trình đường tròn cần tìm: (x – 1)2 + ( y + 1)2 = 9.
c. (I2; R2) là ảnh của (I; 3) qua phép đối xứng trục Ox
⇒ R2 = 3 và I2 = ĐOx(I)
Tìm I2: I2 = ĐOx(I) ⇒ ⇒ I2(3; 2)
⇒ Phương trình đường tròn cần tìm: (x – 3)2 + (y – 2)2 = 9.
d. (I3; R3) là ảnh của (I; 3) qua phép đối xứng qua gốc O.
⇒ R3 = 3 và I3 = ĐO(I)
Tìm I3: I3 = ĐO(I) ⇒
⇒ Phương trình đường tròn cần tìm: (x + 3)2 +(y – 2)2 = 9.
Câu 4:
Cho vectơ v→, đường thẳng d vuông góc với giá của v→ . Gọi d’ là ảnh của d qua phép tịnh tiến theo vectơ . Chứng minh rằng phép tịnh tiến theo vectơ v→ là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d’.
Lấy điểm A bất kì.
Gọi B = Đd (A) ; C = Đd’(B).
Gọi H, K là giao điểm của AB với d và d’ như hình vẽ.
Ta có:
Mà d’ là ảnh của d qua phép tịnh tiến theo vectơ
⇒ C là ảnh của A qua phép tịnh tiến theo vec tơ v→
Câu 5:
Cho hình chữ nhật ABCD. Gọi O là tâm đối xứng của nó. Gọi I, F, J, E lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tìm ảnh của tam giác AEO qua phép đồng dạng có được từ việc thực hiện liên tiếp phép đối xứng qua đường thẳng IJ và phép vị tự tâm B, tỉ số 2.
+ Lấy đối xứng qua đường thẳng IJ.
IJ là đường trung trực của AB và EF
⇒ ĐIJ(A) = B; ĐIJ (E) = F
O ∈ IJ ⇒ ĐIJ (O) = O
⇒ ĐIJ (ΔAEO) = ΔBFO
+ ΔBFO qua phép vị tự tâm B tỉ số 2
Vậy ảnh của ΔAEO qua phép đồng dạng theo đề bài là ΔBCD.
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(1;-3), bán kính 2. Viết phương trình hình ảnh đường tròn (I;2) qua phép đồng dạng có được từ việc thực hiện liên tiếp vị tự tâm O tỉ số 3 và phép đối xứng qua trục Ox.
+ Gọi (I1; R1) là ảnh của (I; 2) qua phép vị tự tâm O, tỉ số 3.
+ Gọi (I2; R2) là ảnh của (I1; R1) qua phép đối xứng trục Ox
⇒ R2 = R1 = 6.
I2 đối xứng với I1 qua Ox ⇒
⇒ I2(3; 9)
Vậy (I2; R2) chính là ảnh của (I; 2) qua phép đồng dạng trên và có phương trình: (x – 3)2 + (y – 9)2 = 36.
Câu 7:
Cho hai điểm A, B và đường tròn tâm O không có điểm chung với đường thẳng AB. Qua mỗi điểm M chạy trên đường tròn (O) dựng hình bình hành MABN. Chứng minh rằng điểm N thuộc một đường tròn xác định.
Vậy khi M di chuyển trên đường tròn (O; R) thì N di chuyển trên đường tròn (O’ ; R) là ảnh của (O ; R) qua phép tịnh tiến theo