Chủ nhật, 22/12/2024
IMG-LOGO
Trang chủ Lớp 7 Toán Trắc nghiệm Toán 7 CTST Bài 4. Phép nhân và phép chia đa thức một biến có đáp án (Phần 2)

Trắc nghiệm Toán 7 CTST Bài 4. Phép nhân và phép chia đa thức một biến có đáp án (Phần 2)

Trắc nghiệm Toán 7 CTST Bài 4. Phép nhân và phép chia đa thức một biến có đáp án (Phần 2) (Vận dụng)

  • 565 lượt thi

  • 3 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Một mảnh vườn hình chữ nhật có chiều dài bằng x(x3 – 2x) (m) và có chiều rộng bằng 2x – 8 (m). Biết rằng mỗi mét vuông vườn trồng được x (kg) củ quả. Biểu thức biểu thị số ki-lô-gam củ quả thu hoạch được từ mảnh vườn đó là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Diện tích của mảnh vườn hình chữ nhật là:

x(x3 – 2x).\((2x - 8)\)

= (x4 – 2x2)(2x – 8)

= x4(2x – 8) – 2x2(2x – 8)

= x4 . 2x – x4 . 8 – 2x2 . 2x + 2x2 . 8

= 2x5 – 8x4 – 4x3 + 16x2

Vì mét vuông vườn trồng được x (kg) củ quả nên ta có biểu thức biểu thị số ki-lô-gam củ quả thu hoạch được từ mảnh vườn đó là:

x(2x5 – 8x4 – 4x3 + 16x2)

= 2x6 – 8x5 – 4x4 + 16x3 (kg).

Vậy ta chọn phương án B.


Câu 2:

Cho hai đa thức: A(x) = x5 + ax3 + 4x2 + b và B(x) = x3 + 4.

Biết rằng A(x) B(x). Chọn khẳng định đúng:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

 

Để A(x) B(x) thì số dư phải bằng 0 nên b – 4a = 0.

Suy ra b = 4a

Vậy ta chọn phương án B.


Câu 3:

Số các giá trị nguyên của x để giá trị của đa thức 3x3 + 10x2 – 5 chia hết cho đa thức 3x + 1 là:
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Thực hiện phép chia đa thức như sau:

Khi đó ta có \(\frac{{3{x^3} + 10{x^2} - 5}}{{3x + 1}} = {x^2} + 3x - 1 + \frac{{ - 4}}{{3x + 1}}\).

Để đa thức 3x3 + 10x2 – 5 chia hết cho đa thức 3x + 1 thì \(\frac{{ - 4}}{{3x + 1}}\) phải là số nguyên.

Suy ra – 4 (3x + 1) hay (3x + 1) Ư(– 4) = {– 4; – 1; 1; 4}.

Ta có bảng sau:

3x + 1

4

1

1

4

x

(nguyên)

\( - \frac{5}{3}\)

(loại)

\( - \frac{2}{3}\)

(loại)

0

(chọn)

1

(chọn)

Khi đó với n {0; 1} thì đa thức 3x3 + 10x2 – 5 chia hết cho đa thức 3x + 1.

Vậy có 2 giá trị x thỏa mãn yêu cầu đề bài.


Bắt đầu thi ngay